cho A= 2 + 2 mũ 2 + 2 mũ 3 + ..... + 2 mũ 60 chứng minh A chia hết cho 6 và 7
cứu mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x+1}{18}=\dfrac{5}{2}\)
\(\Rightarrow2\left(2x+1\right)=5\cdot18\)
\(\Rightarrow4x+2=90\)
\(\Rightarrow4x=90-2=88\)
\(\Rightarrow x=\dfrac{88}{4}=22\)
Tất cả các số nguyên tố > 3 đều có dạng 6n-1 hoặc 6n+1
+ Nếu P = 6n-1 => Q = 6n-1-2=6n-3=3(2n-1) là hợp số
Trường hợp này bị loại
+ Nếu P=6n+1=> Q=6n+1-2=6n-1
\(\Rightarrow P+Q=6n+1+6n-1=12n⋮12\)
a, Số học sinh giỏi kỳ I là:
50 \(\times\) \(\dfrac{2}{5}\) = 20 (học sinh)
Số học sinh khá bằng:
\(\dfrac{3}{5}\): \(\dfrac{6}{13}\) = \(\dfrac{13}{10}\) (Số học sinh giỏi)
Số học sinh khá là:
20 \(\times\) \(\dfrac{13}{10}\) = 26 (học sinh)
Số học sinh trung bình là:
50n - 20 - 26 = 4 (học sinh)
b,Tỉ số phần trăm của số học sinh giỏi và số học sinh cả lớp là:
20 : 50 x 100% = 40%
Đáp số:
`#040911`
`7x = 154`
`\Rightarrow x = 154 \div 7`
`\Rightarrow x = 22`
Vậy, `x = 22.`
Số số hạng của vế phải là:
\(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng vế phải là:
\(\left(2500+2\right)\cdot1250:2=1563750\)
Theo đề bài, ta có:
\(x\left(x+1\right)=1563750\\ \Leftrightarrow x^2+x-1563750=0\\ \Leftrightarrow x+1251x-1250x-1563750=0\\ \Leftrightarrow x\left(x+1251\right)-1250\left(x+1251\right)=0\\ \Leftrightarrow\left(x-1250\right)\left(x+1251\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1250\\x=-1251\end{matrix}\right.\)
8x -16(x-5)=0
8x-16x+80=0
8x - 16x=0-80
x.(8-16)=-80
x.(-8)=-80
x=-80:(-8)
x=10
Vậy x=10
A = (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)
= 6 + 2².(2 + 2²) + ... + 2⁵⁸.(2 + 2²)
= 6 + 2².6 + ... + 2⁵⁸.6
= 6.(1 + 2² + ... + 2⁵⁸) ⋮ 6
A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)
= 2(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁵⁸.7
= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7
Vậy A ⋮ 6 và A ⋮ 7
\(A\) chia hết cho \(7\):
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}+\left(1+2+2^4\right)\)
\(A=\left(1+2+2^2\right).\left(2+2^4+2^7+...+2^{58}\right)\)
\(A=7.\left(2+2^4+2^7+...+2^{58}\right)⋮7\)