Tìm x: \(3^{x+1}-3^x=1428.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
\(\left(2x-\dfrac{1}{2}\right)^2+\dfrac{3}{7}=\dfrac{19}{8}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\dfrac{19}{8}-\dfrac{3}{7}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\dfrac{109}{56}\\ \Rightarrow\left(2x-\dfrac{1}{2}\right)^2=\left(\sqrt{\dfrac{109}{56}}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{2}=\sqrt{\dfrac{109}{56}}\\2x-\dfrac{1}{2}=-\sqrt{\dfrac{109}{56}}\end{matrix}\right.\)
Bạn xem lại đề, số lớn quá ;-;.
B = \(\dfrac{1}{2^3}\) + \(\dfrac{2}{3^3}\) + \(\dfrac{3}{4^3}\)+...+ \(\dfrac{n-1}{n^3}\) (n > 2)
Vì n > 2 ⇒ B > 0 (1)
\(\dfrac{1}{2^3}\) < \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{2}{3^3}\) < \(\dfrac{3}{3^3}\) = \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{3}{4^3}\) < \(\dfrac{4}{4^3}\) = \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
..................................................
\(\dfrac{n-1}{n^3}\)<\(\dfrac{n^{ }}{n^3}\) = \(\dfrac{1}{n^2}\) < \(\dfrac{1}{\left(n-1\right).n}\) = \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\)
Cộng vế với vế ta có:
B < 1 - \(\dfrac{1}{n}\) < 1 (2)
Kết hợp (1) và(2) ta có: 0 < B < 1
Vậy B không phải là số tự nhiên (đpcm)
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
82x+1 – 8x = 3584
=> 8x+1 = 3584
8x+1 = 84
x = 4-1
x = 3
Chúc bạn học tốt
(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0
Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0
x + y = 13 và x - y = 6
x = (13 - 6) : 2 = 3,5
y = 13 - 3,5 = 9,5
Vậy x = 3,5 và y = 9,5
(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0
(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)
(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)
⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0
⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)
|5 - \(\dfrac{2}{3}\)\(x\)| + |\(\dfrac{2}{3}\)y - 4| =0
|5 - \(\dfrac{2}{3}\)\(x\)| ≥ 0 ∀ \(x\); |\(\dfrac{2}{3}\)y - 4| ≥ 0 ∀ y
⇒ |5 - \(\dfrac{2}{3}\)\(x\)| + |\(\dfrac{2}{3}\)y - 4| = 0 ⇔ \(\left\{{}\begin{matrix}5-\dfrac{2}{3}x=0\\\dfrac{2}{3}y-4=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=6\end{matrix}\right.\)
\(\dfrac{5}{6}\) - (\(\dfrac{3}{4}\) + \(\dfrac{7}{8}\) - \(x\)) = 10 - | \(\dfrac{1}{3}\) - \(\dfrac{1}{2}\)|
\(\dfrac{5}{6}\) - (\(\dfrac{13}{8}\)- \(x\)) = 10 - |-\(\dfrac{1}{6}\)|
\(\dfrac{5}{6}\) - \(\dfrac{13}{8}\) + \(x\) = 10 + \(\dfrac{1}{6}\)
- \(\dfrac{19}{24}\) + \(x\) = \(\dfrac{61}{6}\)
\(x\) = \(\dfrac{61}{6}\) + \(\dfrac{19}{24}\)
\(x\) = \(\dfrac{263}{24}\)
a) 3/13 - 3/2 + 10/13
= (3/13 + 10/13) - 3/2
= 1 - 3/2
= -1/2
b) 4/7 - (-2/7) - 7/3
= 4/7 + 2/7 - 7/3
= 6/7 - 7/3
= -31/21
c) 2/3 - (-1/6) + 5/4
= 2/3 + 1/6 + 5/4
= 8/12 + 2/12 + 15/12
= 25/12
a, 3/13 - 3/2 + 10/13
= 3/13 + 10/13
= 1 - 3/2 = -1/2
b,4/7 - (-2/7) - 7/3
= 4/7 + 2/7 - 7/3
= 6/7 - 7/3
= 18/21 - 14/21
= 4/21
c, 2/3 - -1/6 +5/4
= 2/3 + 1/16 +5/4
= 128/192 + 12/192 + 240/192
= 380/192
= 95/4
không hiểu chỗ nào hỏi tui
3\(^{x+1}\) - 3\(^x\) = 1428
3\(^x\).( 3 - 1) = 1428
3\(^x\).2 = 1428
3\(^x\) = 1428: 2
3\(^x\) = 714
3\(^{x+1}\) là số lẻ \(\forall\) \(x\) ⇒ 3\(^x\) \(\ne\) 714 ∀ \(x\) ⇒ \(x\) \(\in\) \(\varnothing\)