Cho đường tròn (O) có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B cắt OA tại E. Tính độ dài BE theo R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = p2p2 = CB = CD ⇒⇒ B’ ≡≡ B và D ≡≡ D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, ˆMAN=ˆMAC+ˆNAC=12(ˆBAC+ˆDAC)=45∘MAN^=MAC^+NAC^=12(BAC^+DAC^)=45∘.
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = \frac{p}{2}2p = CB = CD \Rightarrow⇒ B’ \equiv≡ B và D \equiv≡ D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, \widehat{MAN}=\widehat{MAC}+\widehat{NAC}=\frac{1}{2}\left(\widehat{BAC}+\widehat{DAC}\right)={45}^\circMAN=MAC+NAC=21(BAC+DAC)=45∘.
Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).
Suy ra
AE’ + AF’ = (AC + CE’) + (AB + BF’)
= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.
Do đó: AE’ = AF’ = p.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI ⊥⊥ MN, OK ⊥⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ ⇒⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK ⇒⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI<OK⇒OIOA<OKOAOI<OK⇒OIOA<OKOA
⇒sinˆOAI<sinˆOAK⇒ˆOAI<ˆOAK⇒ˆOAE<ˆOAH.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI \bot⊥ MN, OK \bot⊥ PQ.
Trong đường tròn nhỏ, ta có: MN > PQ \Rightarrow⇒ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK \Rightarrow⇒ AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d) OI < OK\Rightarrow\frac{OI}{OA}<\frac{OK}{OA}OI<OK⇒OAOI<OAOK
\Rightarrow \sin{\widehat{OAI}}< \sin{\widehat{OAK}} \Rightarrow \widehat{OAI}<\widehat{OAK} \Rightarrow \widehat{OAE}<\widehat{OAH}.⇒sinOAI<sinOAK ⇒OAI<OAK⇒OAE<OAH.
a. thay n vào rồi tìm x
b. có x2-2(n-1)x+n2-5=0 là ptb2 có a=1; b=-2(n-1); b'=-n+1; c=n2-5
\(\Delta'=b'^2-ac=\left(-n+1\right)^2-1\cdot\left(n^2-5\right)=n^2-2n+1-n^2+5=-2n+6\)
Để (1) có 2 nghiệm phân biệt x1;x2 thì \(\Delta'>0\Rightarrow-2n+6>0\Rightarrow-2n>-6\Rightarrow n< -3\)
Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=n-1\\x_1x_2=\frac{c}{a}=n^2-5\end{cases}}\)
TBR có: \(x_1^2+x_2^2=14\Rightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2=14\)\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\Leftrightarrow\left(n-1\right)^2-2\left(n^2-5\right)=14\)
\(\Leftrightarrow n^2-2n+1-2n^2+10=14\)
\(\Leftrightarrow-n^2-2n+11-14=0\)
\(\Leftrightarrow-n^2-2n-3=0\)
\(\Leftrightarrow-\left(n^2+2n+3\right)=0\Leftrightarrow n^2+2n+3=0\Leftrightarrow\left(n+3\right)\left(n-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=-3\left(ktm\right)\\n=1\left(tm\right)\end{cases}}\)
Vậy n=1 thì thỏa mãn yêu cầu bài toán
Cho phương trình : x2 - 2(n - 1)x + n2 - 5 = 0 (1)
a, Giải phường trình (1) khi n=-1
Với n=-1 pt (1) trở thành x2 + 4x - 4 = 0
Δ' = b'2 - ac = 4 + 4 = 8
Δ' > 0, áp dụng công thức nghiệm thu được \(x=-2\pm2\sqrt{2}\)
Vậy ...
b, Tìm n để phương trình (1) có 2 nghiệm thoả mãn hệ thức x12 + x22 = 14
Trước hết ta cần xét xem với ĐK nào của n thì phương trình có hai nghiệm
Δ' = b'2 - ac = [-(n-1)]2 - n2 + 5 = n2 - 2n + 1 - n2 + 5 = 6 - 2n
pt có hai nghiệm <=> Δ' > 0 <=> 6 - 2n > 0 <=> n < 3
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2n-2\\x_1x_2=\frac{c}{a}=n^2-5\end{cases}}\)
Khi đó x12 + x22 = 14 <=> ( x1 + x2 )2 - 2x1x2 = 14
<=> ( 2n - 2 )2 - 2( n2 - 5 ) = 14
<=> 4n2 - 8n + 4 - 2n2 + 10 - 14 = 0
<=> n2 - 4n = 0
<=> n( n - 4 ) = 0
<=> n = 0 (tm) hoặc n = 4 (ktm)
Vậy ...
đk: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
Ta có:
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}+\frac{1}{\sqrt{x}-1}+\frac{2-x}{\left(\sqrt{x}-1\right)\sqrt{x}}\right)\)
\(E=\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\div\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\left(\sqrt{x}-1\right)\sqrt{x}}\)
\(E=\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\cdot\frac{\left(\sqrt{x}-1\right)\sqrt{x}}{x-1+\sqrt{x}+2-x}\)
\(E=\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\cdot\frac{\left(\sqrt{x}-1\right)\sqrt{x}}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
a) Ta có OA⊥BC⇒MB=MC.
Mặt khác: MA=MO nên tứ giác ABOC là hình bình hành.
Hình bình hành này có hai đường chéo vuông góc nên là hình thoi. Vậy tứ giác ABOC là hình thoi
b) Ta có BA=BO (hai cạnh hình thoi)
mà BO=OA (bán kính) nên tam giác ABO là tam giác đều.
Suy ra góc BOA=60∘
Ta có EB là tiếp tuyến ⇒EB⊥OB.
Xét tam giác BOE vuông tại B, có:
BE=BO⋅tg60∘=R.tg600=R√3.
Created by potrace 1.16, written by Peter Selinger 2001-2019
a) Tứ giác OCAB là hình thoi vì có hai đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường.
b) Từ câu a) suy ra tam giác ABO vuông, có góc \widehat{O}=60^\circ.O=60∘.
BE=BO.\dfrac{BE}{BO}=BO.\tan60^\circ=R\sqrt{3}.BE=BO.BOBE=BO.tan60∘=R3.