Tìm GTNN của các biểu thức sau:
a) P= \(\left(x-2y\right)^2-\left(y-2012\right)^{2014}\)
b) Q= \(\left(x+y-3\right)^4+\left(x-2y\right)^2+2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(-\frac{3}{4}\right)^{3m-1}=\left(\frac{4}{3}\right)^4=\left(\frac{1}{\frac{3}{4}}\right)^4=\left(\left(\frac{3}{4}\right)^{-1}\right)^4=\left(\frac{3}{4}\right)^{-4}=\left(-\frac{3}{4}\right)^{-4}\) (Lũy thừa số mũ chẵn thì am = (-a)m)
=> 3m - 1 = -4 => 3m = -3 => m = -1
a) \(7^{m-1}=\frac{343}{345}\) => không tồn tại số nguyên m thỏa mãn
a) \(7^{m+2}+2.7^{m-1}=343\)
\(7^{m-1}.7^3+2.7^{m-1}=343\)
\(7^{m-1}.\left(7^3+2\right)=343\)
\(7^{m-1}.345=343\)
\(7^{m-1}=\frac{343}{345}\)
.........................
D E F I
a) Tam giác DEI và DFI có
DE = DF (gt)
EI = FI (gt)
DI chung
=> Tam giác DEI = tam giác DFI (trường hợp bằng nhau C-C-C)
b) Theo câu a, Tam giác DEI = tam giác DFI => góc DIE = góc DFI
Vì EIF thẳng hàng => góc DIE + góc DFI = 1800 , mà 2 góc này bằng nhau
=> góc DIE = góc DFI = 180o /2 = 90o (góc vuông)
c) EF = 10 => EI = 10/2 = 5
Xét tam giác DIE vuông ở I:
DI2 + EI2 = DE2 (Định lý Pitago)
DI2 + 52 = 132
DI2 = 169 - 25 =144 = 122
=> DI = 12 cm
ta có \(a\div b\div c\div d=2\div3\div4\div5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
\(=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
\(\frac{a}{2}=-3\Rightarrow a=2.\left(-3\right)=-6\)
\(\frac{b}{3}=-3\Rightarrow b=\left(-3\right).3=-9\)
\(\frac{c}{4}=-3\Rightarrow c=\left(-3\right).4=-12\)
\(\frac{d}{5}=-3\Rightarrow d=\left(-3\right).5=-15\)
Vậy a=-6;b=-9;c=-12;d=-15
Ta có: a:b:c:d= 2:3:4:5
=> a/2=b/3=c/4=d/5
Áp dụng t/c của dãy tỉ số = nhau ta có:
_________________________
ĐTV sai òi
GTNN cảu P = 0 tại y = 2012 ; x = 4018
GTNN của P = 2015 khi y= 1 ; x = 2
\(f\left(\frac{5}{7}\right)=f\left(\frac{1}{\frac{7}{5}}\right)=\frac{1}{\left(\frac{7}{5}\right)^2}.f\left(\frac{7}{5}\right)=\frac{25}{49}.f\left(1+\frac{2}{5}\right)=\frac{25}{49}.\left(f\left(1\right)+f\left(\frac{2}{5}\right)\right)\)
Ta có : \(f\left(\frac{2}{5}\right)=f\left(\frac{1}{5}+\frac{1}{5}\right)=f\left(\frac{1}{5}\right)+f\left(\frac{1}{5}\right)=2.f\left(\frac{1}{5}\right)=2.\frac{1}{5^2}.f\left(5\right)=\frac{2}{25}.f\left(1+1+1+1+1\right)\)
\(=\frac{2}{25}.\left(f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)+f\left(1\right)\right)=\frac{2}{25}.5=\frac{2}{5}\)
Vậy \(f\left(\frac{5}{7}\right)=\frac{49}{25}.\left(1+\frac{2}{5}\right)=\frac{25}{49}.\frac{7}{5}=\frac{5}{7}\)
ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10
dấu "=" xảy ra khi (x+3)(7-x)>=0
giải ra ta đc: -3<=x<=7,
lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)
=> A>=10+0+8=18 khi x=2,5
Đăt \(t=\frac{a}{b}=\frac{c}{d}\)
=> a = b.t; c = d.t
=> \(\frac{a.b}{c.d}=\frac{b.t.b}{d.t.d}=\frac{b^2}{d^2}\) (1)
Và \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(b.t+b\right)^2}{\left(d.t+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra điều phải chứng minh
Câu b làm như bạn Thang Tran
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\)
Đặt \(\frac{b}{a}=\frac{d}{c}=k\)
\(\Rightarrow b=ak\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+a^2.k^2}{a^2.k^2+c^2}=\frac{a^2}{c^2}=\left(\frac{a}{c}\right)^2=\frac{a}{c}\)
a) Có thể đề là: P = (x - 2y)2 + (y - 2012)2014
Vì (x - 2y)2 \(\ge\) 0 ; (y - 2012)2 \(\ge\) 0 với mọi x; y nên P = (x - 2y)2 + (y - 2012)2014 \(\ge\) 0 với mọi x; y
=> P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0
=> y = 2012 và x = 2y = 4024
b) Vì (x + y - 3)4 \(\ge\) 0 ; (x - 2y)2 \(\ge\) 0 => Q = (x + y - 3)4 + (x - 2y)2 + 2015 \(\ge\) 0 + 0 + 2015 = 2015 với mọi x; y
=> Q nhỏ nhất = 2015 khi x + y - 3 = 0 và x - 2y = 0
=> x = 2y và x + y =3 => 3y = 3 => y = 1 ; x = 2
a) P không có giá trị nhỏ nhất vì lấy y là số lớn tùy ý và x = 2y khi đó P = 0 - (y - 2012)2014 sẽ là số âm có giá trị tuyệt đối rất lớn. Có thể câu hỏi ra là dấu + trước biểu thức (y - 2012)2014.
Nếu P = (x -2y)2 + (y - 2012)2014 thì P > 0 + 0 (lũy thừa bạc chẵn bao giờ cũng không âm)
P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0, hay là y = 2012 và x = 2.y = 4024
b) Q = (x + y - 3)2 + (x - 2y)2 + 2015 > 0 + 0 + 2015 = 2015. Q nhỏ nhất = 2015 khi x + y -3 = 0 và x - 2y = 0
=> x + y =3 (1)
x = 2y (2)
Thay x = 2y vào (1)
=> 2y + y = 3 => 3y = 3 => y = 1
=> x = 2.y = 2
Vậy Q nhỏ nhất = 15 khi x = 2 và y = 1