Cho nửa đường tròn tâm O đường kính AB. Vẻ các tiếp tuyến Ax, By của nửa đường tròn. Kẻ tiếp tuyến tại M thuộc nửa đường tròn. Tiếp tuyến này cắt Ax, By thứ tự tại C, D. Chứng minh rằng đường tròn đường kính CD tiếp xúc với AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kéo dài CI cắt AD tại E.
Chứng minh được CI = IE nên tam giác CDE cân tại D.
Suy ra DI là phân giác góc D, khi đó IH = IA. Vậy DC là tiếp tuyến của đường tròn đường kính AB.
a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.
b) AI = AB : 2 = 12 cm.
Tính được OI = 9 cm.
cm.
AB = AC và OB = OC nên OA là trung trực của đoạn BC, do đó OA vuông góc với BC
b) Chứng minh được BC BD nên BD // AO.
c) Tam giác vuông ABO có nên .
Từ đó chứng minh được tam giác đều, cm.
a) Ta có OA⊥BC⇒MB=MC.
Mặt khác: MA=MO nên tứ giác ABOC là hình bình hành.
Hình bình hành này có hai đường chéo vuông góc nên là hình thoi. Vậy tứ giác ABOC là hình thoi
b) Ta có BA=BO (hai cạnh hình thoi)
mà BO=OA (bán kính) nên tam giác ABO là tam giác đều.
Suy ra góc BOA=60∘
Ta có EB là tiếp tuyến ⇒EB⊥OB.
Xét tam giác BOE vuông tại B, có:
BE=BO⋅tg60∘=R.tg600=R√3.
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = = CB = CD B’ B và D D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, .
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = = CB = CD B’ B và D D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, .
Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).
Suy ra
AE’ + AF’ = (AC + CE’) + (AB + BF’)
= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.
Do đó: AE’ = AF’ = p.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI MN, OK PQ.
Trong đường tròn nhỏ, ta có: MN > PQ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d)
Kẻ OI ⊥⊥ AB ( I ∈∈ CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=CA+DB2 =MC+MD2 =DC2 là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.
Kẻ OI \bot⊥ AB ( I \in∈ CD) ta suy ra OI là đường trung bình của hình thang ABCD và CI = ID.
Khi đó I là tâm đường tròn đường kính CD và IO là khoảng cách d từ tâm I đến AB.
Ta có IO=\dfrac{CA+DB}{2}=\dfrac{MC+MD}{2}=\dfrac{DC}{2}IO=2CA+DB=2MC+MD=2DC là bán kính của đường tròn (I).
Do đó AB tiếp xúc với đường tròn đường kính CD.