Tìm GTLN của biểu thức :
\(N=\sqrt{x^2+1}+\sqrt{2\left(x^2-2\right)}+\sqrt{3\left(7-x^2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2001}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2b+ab^2\right)+\left(abc+b^2c\right)+\left(ac^2+bc^2\right)+\left(a^2c+abc\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Khi đó \(a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\).
Suy ra \(a=2021\)hoặc \(b=2021\)hoặc \(c=2021\).
Suy ra \(A=0\).
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Trả lời:
Bài 1:
a, \(9x^2-4=\left(3x\right)^2-2^2=\left(3x-2\right)\left(3x+2\right)\)
b, \(x^3+27=x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
c, \(8-y^3=2^3-y^3=\left(2-y\right)\left(4+2y+y^2\right)\)
d, \(x^4-81=\left(x^2\right)^2-9^2=\left(x^2-9\right)\left(x^2+9\right)\)\(=\left(x^2-3^2\right)\left(x^2+9\right)=\left(x-3\right)\left(x+3\right)\left(x^2+9\right)\)
e, \(64x^3-1=\left(4x\right)^3-1^3=\left(4x-1\right)\left(16x^2+4x+1\right)\)
f, \(x^6+8y^3=\left(x^2\right)^3+\left(2y\right)^3=\left(x^2+2y\right)\left(x^4-2x^2y+4y^2\right)\)
Bài 3 :
a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Thay x = 6 ta được : \(-\left(6-1\right)^3=-\left(5\right)^3=-125\)
b, \(8-12x+6x^2-x^3=\left(2-x\right)^3\)
Thay x = 12 ta được : \(\left(2-12\right)^3=\left(-10\right)^3=-1000000\)
Bài 4 :
a, \(A=163^2+74.163+37^2=163^2+2.37.163+37^2\)
\(=\left(163+37\right)^2=\left(200\right)^2=40000\)
Trả lời:
Bài 3:
a, \(-x^3+3x^2-3x+1=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Thay x = 6 vào biểu thức trên, ta có:
\(-\left(6-1\right)^3=-5^3=-125\)
b, \(8-12x+6x^2-x^3=2^3-3.2^2.x+3.2.x^2-x^3=\left(2-x\right)^3\)
Thay x = 12 vào biểu thức trên, ta có:
\(\left(2-12\right)^3=\left(-10\right)^3=-1000\)
Bài 4:
a, Ta có: \(A=\) \(163^2+74.163+37^2=163^2+2.163.37+37^2=\left(163+37\right)^2=200^2\)
\(B=\)\(147^2-94.147+47^2=147^2-2.147.47+47^2=\left(147-47\right)^2=100^2\)
Vì \(200^2>100^2\)
nên \(A>B\)
b, Ta có: \(C=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=2^2+4^2+...+100^2-1^2-3^2-...-99^2\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)
\(=1.3+1.7+...+1.199\)
\(=3+7+...+199\)
\(=\frac{\left(199+3\right).50}{2}=5050\) (50 là số số hạng)
\(D=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)
\(=\left(3.7\right)^8-\left[\left(21^4\right)^2-1\right]=21^8-21^8+1=1\)
Vì \(5050>1\)
nên \(C>D\)
a)\(\left(-a+\frac{2}{3}\right)\left(a+\frac{2}{3}\right)=\left(\frac{2}{3}-a\right)\left(\frac{2}{3}+a\right)=\left(\frac{2}{3}\right)^2-a^2=\frac{4}{9}-a^2\)
b)\(\left(x+5\right)\left(x^2-5x+25\right)=x^3+5^3=x^3+125\)
c)\(\left(1-x\right)\left(x^2+x+1\right)=1-x^3\)
d)\(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=\left(a^2+3\right)^2-\left(2a\right)^2=\left(a^2+3\right)^2-4a^2\)
e)\(\left(x+3y\right)\left(9y^2-3xy+x^2\right)=x^3+\left(3y\right)^3=x^3+9y^3\)
f)\(2\left(x-\frac{1}{2}\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x\right)^3-1=8x^3-1\)
\(B=\left(4+x^2\right)\left(4-x^2\right)\)
\(\Leftrightarrow B=16-x^4\)
Do \(x^4\ge0\forall x\Leftrightarrow-x^4\le0\Leftrightarrow16-x^4\le16\)
Dau '' = '' xay ra khi \(\Leftrightarrow x=0\)
\(\Rightarrow MaxB=16\Leftrightarrow x=0\)
bạn chia 1 góc 45 độ thành 3 góc 15 độ ik
(mik nghĩ v ko bt đúng ko)
ĐKXĐ : \(\hept{\begin{cases}x^2-2\ge0\\7-x^2\ge0\end{cases}}\Leftrightarrow\sqrt{2}\le x\le\sqrt{7}\)
Áp dụng bất đẳng thức Bunhiacopxki
Ta có N = \(\sqrt{x^2+1}+\sqrt{2\left(x^2-2\right)}+\sqrt{3\left(7-x^2\right)}\)
\(=1.\sqrt{x^2+1}+1.\sqrt{2\left(x^2-2\right)}+1.\sqrt{3\left(7-x^2\right)}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left[x^2+1+2\left(x^2-2\right)+3\left(7-x^2\right)\right]}\)
\(=\sqrt{3.18}=\sqrt{54}\)
Dấu "=" xảy ra <=> \(\frac{1}{x^2+1}=\frac{1}{2\left(x^2-2\right)}=\frac{1}{3\left(7-x^2\right)}\)
<=> x2 + 1 = 2x2 - 4
<=> x = \(\sqrt{5}\)(tm)
Vậy Max N = \(\sqrt{54}\Leftrightarrow x=\sqrt{5}\)