Tìm các số nguyên dương n và các số nguyên tố P sao cho P= n.(n+1)/2-1
o l m . v n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 giờ vòi 1 chảy được:
`1:8=1/8(bể)`
1 giờ vòi 2 chảy được:
`1:6=1/6(bể)`
1 giờ vòi 3 tháo được:
`1:4=1/4(bể)`
Giờ cả vòi cả chảy cả tháo thì sao `1` giờ được:
`1/6+1/8-1/4=1/24(bể)`
Đáp số : `1/24 bể
Lời giải:
Số lần gieo: $4+3+x+6+y+5=30$
$\Rightarrow x+y=12$
$\Rightarrow x=12-y(1)$
Giá trị trung bình:
\(\overline{X}=\frac{1.4+2.3+3.x+4.6+5.y+6.5}{30}=4\)
$\Rightarrow 64+3x+5y=120$
$3x+5y=56(2)$
Từ $(1); (2)\Rightarrow 3(12-y)+5y=56$
$2y=20$
$\Rightarrow y=10$
$x=12-y=12-10=2$
a, Theo định lí Pytago tam giác ABC vuông tại A
\(CB=\sqrt{AB^2+AC^2}=10cm\)
b, Xét tam giác ABD và tam giác HBD có
^BAD = ^BHD = 900
BD _ chung
^ABD = ^HBD
Vậy tam giác ABD = tam giác HBD (ch-gn)
c, Ta có AD = HD ( 2 cạnh tương ứng )
Xét tam giác DHC vuông tại H
=> HD < DC ( HD là cạnh góc vuông ; DC là cạnh huyền )
=> AD < DC
\(2a^2+b^2-2ab-5b+11< 0\)
\(\Leftrightarrow4a^2+2b^2-4ab-10b+22< 0\)
\(\Leftrightarrow4a^2-4ab+b^2+b^2-10b+25< 3\)
\(\Leftrightarrow\left(2a-b\right)^2+\left(b-5\right)^2< 3\)
Ta có các trường hợp:
- \(\hept{\begin{cases}2a-b=0\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{5}{2}\\b=5\end{cases}}\)(loại)
- \(\hept{\begin{cases}2a-b=1\\b-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=5\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=0\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=6\end{cases}}\)(thỏa mãn)
- \(\hept{\begin{cases}2a-b=1\\b-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{7}{2}\\b=6\end{cases}}\)(loại)
Bài 1 : biến x^4y^3tz^4
Bài 2 :
Theo bài ra ta có a > 0
cạnh còn lại là 2a
Theo định lí Pytago \(a^2+2a^2=3a^2\)
Vậy bình phương cạnh huyền là 3a^2
1) Phần biến của đơn thức đã cho là \(xy^3xtz^4x^2\)
2) Độ dài cạnh góc vuông còn lại là \(2a\)
Theo định lý Py-ta-go, ta có bình phương cạnh huyền bằng \(a^2+\left(2a\right)^2=a^2+4a^2=5a^2\)
3) \(4mx^{2n+5}y^{m-1}=\left(\frac{4}{3}x^ny^3\right).\left(3mx^{n+5}y^{m-4}\right)\)