cho tam giác ABC, AB= 5cm, AC=7.5cm, BC=10cm. Trên cạnh AB lấy D sao cho AD=2cm, DE//BC (E thuộc AC), trên cạnh BC lấy F sao cho BF=6cm
a) Tính AE b) Chứng minh: EF//ABHãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Định lí Bezout: Khi chia đa thức P(x) cho nhị thức \(x-a\) thì có số dư là \(P\left(a\right)\).
Áp dụng:
P(x) chia x+1 dư 4 \(\Rightarrow P\left(-1\right)=4\)
P(x) chia x+2 dư 1\(\Rightarrow P\left(-2\right)=1\)
Vì P(x) chia x2+3x+2 được thương là 5x2 nên ta có:
\(P\left(x\right)=\left(x^2+3x+2\right).5x^2+ax+b\left(1\right)\) (a,b là hằng số).
Thay \(x=-1\) vào (1) ta được:
\(P\left(-1\right)=\left(1^2-3.1+2\right).5.1^2-a+b=-a+b\)
\(\Rightarrow b-a=4\left(\cdot\right)\)
Thay \(x=-2\) vào (1) ta được:
\(P\left(-2\right)=\left(2^2-3.2+2\right).5.2^2-a.2+b\)
\(\Rightarrow b-2a=1\left(\cdot\cdot\right)\)
Từ (*), (**) ta có hệ: \(\left\{{}\begin{matrix}b-a=4\\b-2a=1\end{matrix}\right.\)
Giải ra ta được \(\left\{{}\begin{matrix}a=3\\b=7\end{matrix}\right.\)
Vậy \(P\left(x\right)=\left(x^2+3x+2\right).5x^2+3x+7\)
Thay \(x=-10\) vào P(x) ta được:
\(P\left(-10\right)=\left(10^2-3.10+2\right).5.10^2-3.10+7=35977\)
\(\left(x-2\right)^3\)+\(\left(x+1\right)^3\)+\(\left(1-2x\right)^3\) = 0
\(x^3-6x^2+12x-8+x^3+3x^2+3x+1+1-6x+12x^2-8x^3\text{=}0\)
\(-6x^3+9x^2+9x-6\text{=}0\)
\(\left(-6x^3-6\right).\left(9x^2+9x\right)\text{=}0\)
\(6\left(-x^2-1\right)+9x\left(x+1\right)\text{=}0\)
\(6\left(x-1\right)\left(x+1\right)+9x\left(x+1\right)\text{=}0\)
\([6(x-1)+9x].\left(x+1\right)\text{=}0\)
\(\left(6x-6+9x\right).\left(x+1\right)\text{=}0\)
\(\left(15x-6\right)\left(x+1\right)\text{=}0\)
\(TH1:15x-6\text{=}0\)
\(15x\text{=}6\)
\(x\text{=}\dfrac{2}{5}\)
\(TH2:x+1\text{=}0\)
\(x\text{=}-1\)
Vậy phương trình một ẩn x có tập nghiệm S \(\in(\dfrac{2}{5};-1)\)
bạn mở rộng, bỏ ngoặc, rút gọn có đa thức 6x3 . ... Đa thức này có nghiệm là - 1, nhẩm ra , bạn chia đa thức 6 x3 .... với (x + 1)
a. \(x\ne5\) là ĐKXĐ của biểu thức P
b. P =\(\dfrac{\left(x-5\right)^2}{x-5}\)=\(x-5\)
c. P = -1 <=> x-5 =-1 <=> x=4
\(\dfrac{x}{x-5}+\dfrac{4x}{x+5}+\dfrac{x\left(x-15\right)}{x^2-25}\)
= \(\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{4x\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x-15\right)}{\left(x+5\right)\left(x-5\right)}\)
= \(\dfrac{x^2+5x+4x^2-20x+x^2-15x}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x^2-30x}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x}{x+5}\)
\(đk:x\ne1\\ \dfrac{x^2+5x}{3x^2-6x+3}:\dfrac{7x+35}{6x-6}\\ =\dfrac{x\left(x+5\right)}{3\left(x^2-2x+1\right)}:\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x\left(x+5\right)}{3\left(x-1\right)^2}\times\dfrac{6\left(x-1\right)}{7\left(x+5\right)}\\ =\dfrac{2x}{7\left(x-1\right)}\)
a) Áp dụng định lý Thales trong tam giác ABC, ta có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) . Kết hợp với giả thiết ta được \(\dfrac{2}{5}=\dfrac{AE}{7,5}\) \(\Rightarrow AE=3\)
b) Ta thấy \(\dfrac{AE}{AC}=\dfrac{3}{7,5}=\dfrac{2}{5}\) nhưng \(\dfrac{BF}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\ne\dfrac{AE}{AC}\) nên theo định lý Thales đảo, ta không thể có EF//AB.