Với x, y, z là các số thực dương hãy tìm giá trị lớn nhất của biểu thức M=xyz/(x+y)(y+z)(z+x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(y^2+xy+x+y+5=y^2+xy+x+y+4+1\)
\(=y^2+xy+x+y+\left(x+y\right)\left(x+1\right)+1\)
\(=\left(x+y+1\right)^2\)
\(x^3+y^3+12y+13=x^3+y^3+12\left(y+1\right)+1\)
\(=x^3+y^3+3\left(x+y\right)\left(x+1\right)\left(y+1\right)+1\)
\(=x^3+y^3+3\left(x+y\right)\left(xy+x+y+1\right)+1\)
\(=x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1\)
\(=\left(x+y+1\right)^3\)
Khi đó phương trình thứ hai tương đương với
\(\left(x+y+1\right)^5=243\Leftrightarrow x+y+1=3\)
Từ đây kết hợp phương trình một ta được \(x=y=1\).

a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với a>b>0a>b>0 nên \sqrt{a},\sqrt{b},\sqrt{a-b}a,b,− đều xác định
Để so sánh \sqrt{a}-\sqrt{b}a−b và \sqrt{a-b}− ta quy về so sánh \sqrt{a}a và \sqrt{a-b}+\sqrt{b}−+b.
+) (\sqrt{a})^2=a(a)2=a.
+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}(−+b)2=(−)2+2−.b+(b)2=a−b+b+2−.b=a+2−
.b.
Do a>b>0a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>02−.b>0
\Rightarrow⇒ a+2\sqrt{a-b}.\sqrt{b}>aa+2−.b>a
\Rightarrow⇒ (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2(−+b)2>(a)2
Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0a,−+b>0
\Rightarrow⇒ \sqrt{a-b}+\sqrt{b}>\sqrt{a}−+b>a
\Leftrightarrow⇔ \sqrt{a-b}>\sqrt{a}-\sqrt{b}−>a−b (đpcm)
Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}−>a−b.

(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)
(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)
(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)

a, \(\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
b, \(\frac{\sqrt{15}}{\sqrt{735}}=\sqrt{\frac{15}{735}}=\sqrt{\frac{1}{49}}=\frac{1}{7}\)
c, \(\frac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\frac{12500}{500}}=\sqrt{\frac{125}{5}}=\sqrt{25}=5\)
d, \(\frac{\sqrt{6^5}}{\sqrt{2^3.3^5}}=\sqrt{\frac{6^5}{2^3.3^5}}=\sqrt{\frac{2^5.3^5}{2^3.3^5}}=\sqrt{2^2}=2\)
a) căn 2 / căn 18 = 1/3
b) căn 15/ căn 735 = 1/7
c) căn 12500 / căn 500 = 5
d) căn 6^5 / 2^3 * 3^5 = 2

a, \(\sqrt{\frac{289}{25}}=\frac{\sqrt{289}}{\sqrt{25}}=\frac{17}{5}\)
b, \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)
c, \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\)
d, \(\sqrt{\frac{8,1}{16}}\)đề có sai ko cô ?
a) căn 289 / 225 = 17/15
b) căn 64/ 25 = 8/5
c) căn 0,25 / 9 = 1/6
d) căn 8,1 / 1,6 = 9/4