Tìm a, b, c biết : \(\frac{a}{2}=\frac{b}{c}=\frac{c}{4}\)và \(a^2-b^2+2c^2=108\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phá dấu giá trị tuyệt đối :
\(\left|x+\frac{3}{5}\right|=x+\frac{3}{5}\) nếu x \(\ge\) \(-\frac{3}{5}\) và \(\left|x+\frac{3}{5}\right|=-\left(x+\frac{3}{5}\right)\) nếu x < \(-\frac{3}{5}\)
\(\left|x+\frac{1}{5}\right|=x+\frac{1}{5}\) nếu x \(\ge\) \(-\frac{1}{5}\) và \(\left|x+\frac{1}{5}\right|=-\left(x+\frac{1}{5}\right)\) nếu x < \(-\frac{1}{5}\)
|x + 3| = x + 3 nếu x \(\ge\) -3 và |x + 3| = - (x+3) nếu x < -3
Xét các khoảng như sau:
+) Nếu x < - 3 thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) - (x+3) = -x - \(\frac{3}{5}\) - x - \(\frac{1}{5}\) - x - 3 = -3x \(-\frac{19}{5}\) > (-3). (-3) \(-\frac{19}{5}\) = 26/5
+) Nếu -3 \(\le\) x < \(-\frac{3}{5}\) thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x + 3 = -x + 11/5 > - (-3/5) + 11/5 = 14/5
+) Nếu \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\) => A = \(\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x+ 3 = x + \(\frac{17}{5}\) \(\ge\) (-3/5) + 17/5 = 14/5
+) Nếu x \(\ge\) \(-\frac{1}{5}\)=> A = \(\left(x+\frac{3}{5}\right)\) + \(\left(x+\frac{1}{5}\right)\) + x+ 3 = 3x + 19/5 \(\ge\) 3. (-1/5) + 19.5 = 16/5
Từ các trường hợp trên => A nhỏ nhất bằng 14/5 khi \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\)
\(\sqrt{24}+\sqrt{35}+\sqrt{99}<\sqrt{25}+\sqrt{36}+\sqrt{100}=5+6+10=21\)
Gọi số cây tồng của đội 1 là a, đội 2 là b, đội 3 là c (a,b,c \(\in\)N)
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)và b+c-a=5
=> \(\frac{6}{12}a=\frac{6}{9}b=\frac{6}{8}c\)
Áp dụng tính chất dãy tỉ số băng nhau ta có:
\(\frac{6}{12}a=\frac{6}{9}b=\frac{6}{8}c\)\(=\frac{6b+6c-6a}{9+8-12}=\frac{6.\left(b+c-a\right)}{5}=\frac{6.5}{5}=6\)
Từ \(\frac{6}{12}a=6\)=>a=12
Tù \(\frac{6}{9}b=6\)=> b=9
Từ \(\frac{6}{8}c=6\)=> c=8
Vậy số cây tồng của đội 1 là 12, đội 2 là 9, đội 3 là 8
Gọi số cây trồng của đội 1 là a , đội 2 là b , đội 3 là c (a,b,c∈N)(a,b,c∈N)
Ta có : 12a=23b=34c12a=23b=34c và b+c−a=5b+c−a=5
⇒612a=69b=68a⇒612a=69b=68a
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
612a=69b=68c=6b+6c−6a9+8−12=6.(b+c−a)5=6.55=6612a=69b=68c=6b+6c−6a9+8−12=6.(b+c−a)5=6.55=6
Từ : 612a=6⇒a=12612a=6⇒a=12.
Từ : 69b=6⇒b=969b=6⇒b=9
Từ : 68c⇒c=868c⇒c=8
Vậy số cây trồng của đội 1 là 12 , đội 2 là 9 đội 3 là 8
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
Nhắc lại về định nghĩa trị tuyệt đối:
\(\left|A\right|=0\text{ khi }A=0\)
\(\left|A\right|=A\text{ khi }A>0\)
\(\left|A\right|=-A\text{ khi }A<0\)
Cũng có thể viết \(\left|A\right|=A\text{ khi }A\ge0;\text{ }\left|A\right|=-A\text{ khi }A\le0\)
\(\left|a\left(b-2\right)\right|=a\left(2-b\right)\Leftrightarrow\left|a\left(b-2\right)\right|=-a\left(b-2\right)\)
\(\Leftrightarrow a\left(b-2\right)\le0\)
\(\Leftrightarrow\left(a\le0\text{ và }b-2\ge0\right)\text{ hoặc }\left(a\ge0\text{ và }b-2\le0\right)\)
\(\Leftrightarrow\left(a\le0\text{ và }b\ge2\right)\text{ hoặc }\left(a\ge0\text{ và }b\le2\right)\)
Ta có: \(A=\frac{3-2}{3}+\frac{15-2}{15}+\frac{35-2}{35}+\frac{63-2}{63}+\frac{99-2}{99}+\frac{143-2}{143}+\frac{195-2}{195}\)
\(A=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)+\left(1-\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(A=7-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=7-\left(1-\frac{1}{15}\right)=7-1+\frac{1}{15}=6\frac{1}{15}\)không là số nguyên