cho mk hỏi:lớp 4a có 30 học sinh, lớp 4b có nhiều hơn lớp 4c 4 bạn
tính số học sinh của 1 lớp biết tổng số học sinh của 3 lớp là 90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(9+1) + ( 2 + 8 ) + ( 3 + 7) + ( 4 + 6 ) + 5
=10 + 10 + 10 + 10 + 5
= 10 x 4 + 5
= 40 + 5
= 45
1+2+3+4+5+6+7+8+9
= ( 1 + 9 ) + ( 2 + 8 ) + ( 3 + 7 ) + ( 4 + 6 ) + 5
= 10 x 4 + 5
= 45
~HT~
@Anh
Olm chào em, đây là toán nâng cao chuyên đề lập số theo điều kiện cho trước, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng bằng tư duy logicnày như sau: Cần hỏi thêm gì về bài giảng em liên hệ: zalo của cô số: Thương Hoài 0385 168 017
Giải:
Số có ba chữ số mà các chữ số ở các hàng đều là 2: 222
Số lẻ lớn nhất có hai chữ số là: 99
Số tự nhiên đứng trước số lẻ lớn nhất có hai chữ số là:
99 - 1 = 98
Số cần tìm là: 222 - 98 = 124
Đáp số: 124
a: Xét tứ giác OBDA có \(\widehat{OBD}+\widehat{OAD}=90^0+90^0=180^0\)
nên OBDA là tứ giác nội tiếp
=>O,B,D,A cùng thuộc một đường tròn
b: Xét (O) có
ΔBAC nội tiếp
BC là đường kính
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)CE tại A
Xét ΔBEC vuông tại B có BA là đường cao
nên \(CA\cdot CE=CB^2=\left(2R\right)^2=4R^2\)
c:
i: Xét (O) có
DA,DB là các tiếp tuyến
Do đó: DA=DB
=>D nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OD là đường trung trực của AB
=>OD\(\perp\)AB tại K và K là trung điểm của AB
Xét tứ giác AKOI có \(\widehat{AKO}=\widehat{AIO}=\widehat{KAI}=90^0\)
nên AKOI là hình chữ nhật
=>OA=IK
=>IK=R
ii: ΔAHB vuông tại H
mà HK là đường trung tuyến
nên HK=KA=KB
=>K là tâm đường tròn ngoại tiếp ΔAHB
Gọi M là giao điểm của AO và KI
AKOI là hình chữ nhật
=>AO cắt KI tại trung điểm của mỗi đường
=>M là trung điểm chung của AO và KI
ΔAHO vuông tại H
mà HM là đường trung tuyến
nên \(HM=\dfrac{AO}{2}=\dfrac{KI}{2}\)
Xét ΔHKI có
HM là đường trung tuyến
HM=KI/2
Do đó: ΔHKI vuông tại H
=>HK\(\perp\)HI
Xét (K) có
HK là bán kính
HI\(\perp\)HK tại H
Do đó: HI là tiếp tuyến của (K)
=>HI là tiếp tuyến của đường tròn ngoại tiếp ΔHAB
iii: Vì \(\widehat{AHO}=\widehat{AKO}=\widehat{AIO}=90^0\)
nên A,H,K,O,I cùng thuộc đường tròn đường kính AO
trung bình cộng của 50 số lẻ liên tiếp là 50 . Số lớn nhất là?
Olm chào em, đây là toán nâng cao chuyên đề số thập, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp tổng tỉ ẩn tỉ của tiểu học như sau:
Giải:
Vì thương của hai số là: 0,6 nên tỉ số của hai số là:
0,6 = \(\dfrac{3}{5}\)
Ta có sơ đồ:
Theo sơ đồ ta có:
Số lớn là: 0,6 : (3 + 5) x 5 = 0,375
Số bé là: 0,6 - 0,375 = 0,225
Đáp số: Số lớn là: 0,375
Số bé là: 0,225
a: 2(a+b)-a+3b
=2a+2b-a+3b
=a+5b
b: 4(3a-4b)+5(2a+b)
=12a-16b+10a+5b
=12a+10a-16b+5b
=22a-11b
Câu 3.1
+ Vì p; q đều là số nguyên tố nên p.q > 2 mà pq + 11 là số nguyên tố nên pq + 11 là số lẻ.
+ Vì 11 là số lẻ thì pq là số chẵn. Vậy p, q phải có ít nhất một số là số chẵn.
a; Nếu p = 2 ta có: 14 + q \(\in\) P và 2q + 11 \(\in\) P
+ Nếu q = 2 ta có: 14 + 2 = 16 (loại vì 16 không phải là số nguyên tố)
+ Nếu q = 3 ta có: \(\left\{{}\begin{matrix}14+q=14+3=17\left(tm\right)\\2.q+11=2.3+11=17\left(tm\right)\end{matrix}\right.\)
+ Nếu q > 3 thì q có dạng: q = 3k + 1 hoặc 3k + 2
Trường hợp 1: q = 3k + 1 thì
14 + q = 14 + 3k + 1 = (14 + 1) + 3k = 15 + 3k ⋮ 3 (loại vì đây là hợp số)
Trường hợp 2: q = 3k + 2 thì:
2q + 11 = 2.(3k + 2) + 11 = 6k + 4 +11 = 6k + (4 + 11) = 6k + 15 ⋮ 3(loại vì đây là hợp số)
b; Nếu q = 2 ta có: 7p + 2 \(\in\) P và 2p + 11 \(\in\) P
Chứng minh tương tự ta có: q = 2 và p = 3
Từ những lập luận và phân tích trên ta có các cặp số nguyên tố p và q thỏa mãn đề bài là:
(p; q) = (2; 3); (3; 2)
Câu 4:
Gọi chiều rộng khu đất là x(m)
(Điều kiện: x>0)
Chiều dài khu đất là 3x(m)
Chiều rộng khu đất sau khi tăng thêm 3m là x+3(m)
Chiều dài khu đất sau khi giảm đi 3m là 3x-3(m)
Diện tích tăng thêm 75m2 nên ta có:
\(\left(3x-3\right)\left(x+3\right)-3x\cdot x=75\)
=>\(3x^2+9x-3x-9-3x^2=75\)
=>6x=9+75=84
=>x=14(nhận)
Vậy: Chiều rộng khu đất là 14m
Chiều dài khu đất là 14*3=42m
Câu 4: Số học sinh khối 6 tham dự là:
\(250\cdot40\%=100\left(bạn\right)\)
Tổng số học sinh khối 7 và khối 8 tham dự là:
250-100=150(bạn)
Tỉ số giữa số học sinh khối 7 và khối 8 là:
\(\dfrac{4}{7}:\dfrac{1}{2}=\dfrac{8}{7}\)
Số học sinh khối 7 tham dự là:
\(150\cdot\dfrac{8}{7+8}=150\cdot\dfrac{8}{15}=80\left(bạn\right)\)
Số học sinh khối 8 tham dự là:
150-80=70(bạn)
Olm chào em, đây là toán nâng cao chuyên đề, toán tìm thành phần chưa biết của phép tính, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay. Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp toán tổng hiệu sau:
Giải
Tổng số học sinh lớp 4B và 4C là: 90 - 30 = 60 (học sinh)
Ta có sơ đồ:
Theo sơ đồ ta có:
Số học sinh lớp 4B là: (60 + 4) : 2 = 32 (học sinh)
Số học sinh lớp 4C là: 60 - 32 = 28 (học sinh)
Đáp số: Số học sinh lớp 4B là: 32 học sinh
Số học sinh lớp 4C là: 28 học sinh
Tổng số học sinh của lớp 4B và lớp 4C là:
90-30=60(bạn)
Số học sinh lớp 4B là (60+4):2=64:2=32(bạn)
Số học sinh lớp 4C là 32-4=28(bạn)