Cho ABCD là hình thang cân (AB // CD) có hai đường chéo cắt nhau tại O.
a. Chứng minh: OA = OB và OC = OD
b. Chứng minh: AC + BD > AB + CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-2xy+y^2-xz+yz =(x-y)2-xz+yz
=(x-y)2-(xz-yz)
=(x-y)2-z(x-y)
=(x-y)(x-y-z)
\(x^2-2xy+y^2-xz+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y-z\right)\left(x-y\right)\)
bài 3
a, x2 + 4x + 3
= x2 + x + 3x + 3
= x ( x +1 ) + 3 ( x +1 )
= ( x + 1 ) ( x +3 )
b, x2 + 7x + 10
= x2 + 2x + 5x + 10
x ( x + 2 ) + 5( x + 2)
= ( x +2 ) ( x +5 )
bài 4
a, 3x( x -1 ) - 5( x -1 ) =0
( x -1 ) ( 3x -5 ) =0
=> \(\orbr{\begin{cases}x-1=0\\3x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=\frac{5}{3}\end{cases}}\)
vậy x =1; x=5/3
b, 4x2( x -2 ) + 9(2-x) =0
4x2( x-2 ) -9( x-2) =0
( x-2 ) ( 4x2 -9 ) =0
=> \(\orbr{\begin{cases}x-2=0\\4x^2-9=0\end{cases}}\) => \(\orbr{\begin{cases}x=2\\\left(2x\right)^2=9\end{cases}}\) => \(\orbr{\begin{cases}x=2\\\left(2x\right)^2=\left(\pm3\right)^2\end{cases}}\) => \(\orbr{\begin{cases}x=2\\2x=\pm3\end{cases}}\)
=> ( chỗ này mk tạm ẩn vế x=2 đi ) \(\orbr{\begin{cases}2x=3\Rightarrow x=\frac{3}{2}\\2x=-3\Rightarrow x=-\frac{3}{2}\end{cases}}\)
vậy x = 2; x= \(\pm\frac{3}{2}\)
c, 8x3 -4x2 + 2x -1 =0
8x3-1 - ( 4x2 -2x ) =0
( 2x-1)( 4x2 +2x +1 ) - 2x( 2x-1 )=0
( 2x -1 ) ( 4x2 +2x +1 -2x ) =0
( 2x -1 ) ( 4x2 +1 )=0
=> \(\orbr{\begin{cases}2x-1=0\\4x^2+1=0\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{1}{2}\\4x^2=-1\left(loại\right)\end{cases}}\) => \(x=\frac{1}{2}\)
vậy x = 1/2
ta có :
\(\left(x+y+z\right)^3=x^3+\left(y+z\right)^3+3x\left(y+z\right)\left(x+y+z\right)\)
\(=x^3+y^3+z^3+3yz\left(y+z\right)+3x\left(y+z\right)\left(x+y+z\right)\)
Vậy \(\left(x+y+z\right)^3-x^3-y^3-z^3=3yz\left(y+z\right)+3x\left(y+z\right)\left(x+y+z\right)=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
x2 + 2xz + 2xy + 4yz
= ( x2 + 2xy ) + ( 2xz +4yz )
= x( x +2y ) + 2z( x +2y )
= (x +2y ) ( x +2z )
2xy + 3z +6y + xz
= 2xy + 6y + xz + 3z
= 2y( x +3 ) + z( x +3)
= ( x +3 ) ( 2y+ z)
a: Xét ΔACD và ΔBDC có
AC=BD
CD chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: ˆACD=ˆBDCACD^=BDC^
hay ˆODC=ˆOCDODC^=OCD^
Xét ΔOCD có ˆODC=ˆOCDODC^=OCD^
nên ΔOCD cân tại O
Suy ra: OC=OD
Ta có: AO+OC=AC
OB+OD=BD
mà AC=BD
và OC=OD
nên OA=OB