Tìm x biết:
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
A = \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
A = \(\frac{35}{6}-\frac{31}{6}-\frac{19}{6}\)
A = \(\frac{-15}{6}=\frac{-5}{2}\)
Cách 2:
A = \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
A = \(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
A = \(6-5-3-\frac{2}{3}-\frac{5}{3}+\frac{7}{3}+\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\)
A = \(\left(6-5-3\right)-\left(\frac{2}{3}+\frac{5}{3}-\frac{7}{3}\right)+\left(\frac{1}{2}-\frac{3}{2}-\frac{5}{2}\right)\)
A = \(-2-0+\left(2-\frac{5}{2}\right)\)
A = \(-2+\left(2-\frac{5}{2}\right)\)
A = \(-2+2-\frac{5}{2}\)
A = \(0-\frac{5}{2}\)
A = \(\frac{-5}{2}\)
a) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0
ta có: M = |x - 2016| + |x - 2015| = |2016 - x| + |x - 2015| \(\ge\) |2016 - x+ x - 2015| = |1| = 1
=> GTNN của M bằng 1 khi (2016 - x). (x - 2015) \(\ge\) 0 => - (x - 2016). (x - 2015) \(\ge\) 0
=> (x - 2016).(x - 2015) \(\le\) 0 => x - 2016 và x - 2015 trái dấu
Nhận xét: x - 2016 < x - 2015 . Do đó, x - 2016 \(\le\) 0 và x - 2015 \(\ge\) 0 => x \(\le\) 2016 và x \(\ge\) 2015
hay 2015 \(\le\)x \(\le\) 2016
Vậy M nhỏ nhất = 1khi 2015 \(\le\)x \(\le\) 2016
Nếu x<2016=>A= -x+2016+2015-x=2x+4031
khi đó -x>-2016 thì =>-2x+4031>-4030+4031=1=>A>1
Nếu 2016 _< x _<2015 thì A= x-2016+2015-x=1
Nếu x>2015 thì A=x-2016-2015+x=2x-4031
Do x>2016=>2x-4031>4032-4031=1=>A>1
Vậy A đạt giá trị nhỏ nhất là 1 khi 2016_<x_<2015
Áp dụng tính chất của dãy tỉ số bằng nhau có: \(\frac{y^2-x^2}{3}=\frac{x^2+y^2}{5}=\frac{\left(y^2-x^2\right)+\left(x^2+y^2\right)}{3+5}=\frac{\left(y^2-x^2\right)-\left(x^2-y^2\right)}{3-5}\)
=> \(\frac{2y^2}{8}=\frac{-2x^2}{-2}\Rightarrow\frac{y^2}{4}=x^2\) => y2 = 4x2
Ta có x10.y10 = x10. (4x2)5 = 1024.x20 = 1024 => x20 = 1 => x =1 hoặc x = -1
=> y2 = 4 => y = 2 hoặc y = -2
Vậy ...
=> (x - 3).(1 - x).x < 0
=> (x - 3). [- (x - 1)] . x < 0 Hay - [(x - 3). (x - 1).x] < 0
=> (x -3)(x - 1).x > 0 => cả 3 số x -3 ; x - 1 ; x cùng dương hoặc 2 số âm và 1 số dương
Nhận xét: x - 3 < x - 1 < x ( Vì -3 < -1 < 0). Do đó:
+) Nếu cả 3 số cùng dương thì 0 < x - 3 < x - 1 < x
=> x - 3 > 0 => x > 3
+) Nếu 2 số âm và 1 số dương thì x - 3 < x - 1 < 0 < x
=> x - 1 < 0 và x > 0
=> x < 1 và x > 0 Hay 0 < x < 1
Vậy với x > 3 hoặc 0 < x < 1 thì....
=> \(\frac{\left(x+5\right)-\left(x+3\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> \(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> \(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\) => \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\) => x = 15
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow x=15\)