Làm giúp mìnLamf giúp mình với please
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6, Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :
\(BC^2=AB^2+AC^2\)
\(x^2=3^2+4^2=9+16=25\)
\(x=\sqrt{25}=5\)cm
Áp dụng định lí Pytago trong \(\Delta KHI\perp H\)có :
\(KI^2=HK^2+HI^2\)
\(HI^2=KI^2-HK^2\)
\(x^2=10^2-6^2=100-36=64\)
\(x=\sqrt{64}=8\)cm
7,
A B C Q R
a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABC}\)và \(\widehat{ABQ}\)là 2 góc kề bù :
= > \(\widehat{ABC}+\widehat{ABQ}=180^0\)
= > \(\widehat{ABQ}=180^0-\widehat{ABC}\)( 1 )
\(\widehat{ACB}\)và \(\widehat{ACR}\)là 2 góc kề bù :
= > \(\widehat{ACB}+\widehat{ACR}=180^0\)
= > \(\widehat{ACR}=180^0-\widehat{ACB}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{ABQ}=\widehat{ACR}\)
Xét \(\Delta ABQ\)và \(\Delta ACR\)có :
\(AB=AC\left(gt\right)\)
\(\widehat{ABQ}=\widehat{ACR}\left(cmt\right)\)
\(BQ=CR\left(gt\right)\)
\(=>\Delta ABQ=\Delta ACR\left(c.g.c\right)\)
= > AQ = AR ( 2 cạnh tương ứng )
b, Xét \(\Delta AHQ\)và \(\Delta AHR\)có :
AH chung
AQ = AR
Mặt khác :
\(B\in QH\)
= > BQ + HB = QH
\(C\in RH\)
= > CR + HC = HR
Mà BQ = CR , HB = HC
= > QH = RH
\(=>\Delta AHQ=\Delta AHR\left(c.c.c\right)\)
= > \(\widehat{QAH}=\widehat{RAH}\)( 2 góc tương ứng )
A B C H K D E I
a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta HBD\perp H\)và \(\Delta KCE\perp K\)có :
\(BD=CE\left(gt\right)\)
Mặt khác : góc HBD đối đỉnh với góc ABC = > góc HBD = góc ABC
góc KCE đối đỉnh với góc ACB = > góc KCE = góc ACB
Mà góc ABC = ACB = > góc HBD = góc KCE
\(=>\Delta HBD=\Delta KCE\left(ch-gn\right)\)
= > HB = CK ( 2 cạnh tương ứng )
b, Xét \(\Delta AHB\)và \(\Delta AKC\)có
HB = CK ( cmt )
AB = AC ( gt )
\(\widehat{HBD}+\widehat{HBA}=180^0\)
= > \(\widehat{HBA}=180^0-\widehat{HBD}\)( 1 )
\(\widehat{KCE}+\widehat{KCA}=180^0\)
= > \(\widehat{KCA}=180^0-\widehat{KCE}\)( 2 )
Từ ( 1 ) và ( 2 ) = > \(\widehat{HBA}=\widehat{KCA}\)
\(=>\Delta AHB=\Delta AKC\left(c.g.c\right)\)
c, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)( 1 )
\(B\in AD\)
= > AB + BD = AD ( * )
\(C\in AE\)
= > AC + CE = AE ( ** )
Từ ( * ) và ( ** ) = > AD = AE hay \(\Delta ADE\)cân tại A
= > \(\widehat{ADE}=\frac{180^0-\widehat{EAD}}{2}\)( 2 )
Từ ( 1 ) và ( 2 ) = > \(\widehat{ABC}=\widehat{ADE}\)hay HK // DE
d, Xét \(\Delta AHE\)và \(\Delta AKD\)có:
\(\widehat{A}\)chung
AH = AK ( cmt )
AE = AD ( cmt )
= > \(\Delta AHE=\Delta AKD\left(c.g.c\right)\)
câu e, bạn làm nốt nhé
A B C E 1 2
Vẽ trên máy tính nên ko được đẹp lắm bạn thông cảm
Xét \(\Delta ABE\)có :
AB = AE = > \(\Delta ABE\)cân tại A
= > \(\widehat{B}=\widehat{AEB}\)
Xét \(\Delta ABD\)và \(\Delta AED\)có:
AB = AE ( gt )
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(\widehat{B}=\widehat{AEB}\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta AED\left(g.c.g\right)\)
b, Vì \(\Delta ABD=\Delta AED\)( câu a, )
= > BD = DE ( 2 cạnh tương ứng )
= > D là trung điểm của BE ( 1 )
\(\widehat{ADB}=\widehat{ADE}\)( 2 góc tương ứng )
Mà 2 góc này kề bù với nhau
= > \(\widehat{ADB}=\widehat{ADE}=\frac{180^0}{2}=90^0\)hay \(AD\perp BE\)( 2 )
Từ ( 1 ) và ( 2 ) = > AD là đường trung trực của BE
c, \(\widehat{ADB}=90^0\)
= > \(\widehat{A_2}+\widehat{AED}=90^0\)
hay \(\widehat{AED}\) phải là góc nhọn
Mà \(\widehat{AED}\)và \(\widehat{DEC}\)kề bù nhau
= > \(\widehat{AED}+\widehat{DEC}=180^0\)
\(\widehat{DEC}=180^0-\widehat{AED}\)
Mà \(\widehat{AED}\)là góc nhọn = > \(\widehat{DEC}\)là góc tù
Do \(\widehat{DEC}\)là góc tù nên cạnh đối diện với góc tù DC là cạnh lớn nhất
= > DC > DE
Mà DB = DE
= > DC > DB
1 , Đề bài thiếu
2 , \(\Delta ABC\)cân tại A = > \(\widehat{B}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-80^0}{2}=\frac{100^0}{2}=50^0\)
chứng minh rằng nếu mỗi giá trị của dấu hiệu giảm đi 3 lần thì số trung bình cộng cũng giảm đi 3 lần:thiếu đề viết thêm để bổ sung!
Xét \(\Delta ACB\)có:
E là trung điểm của AC(Do BE là đường trung tuyến)
D là trung điểm của BC(Do AD là đường trung tuyến)
\(\Rightarrow ED\)là đường trung bình của \(\Delta ACB\)
\(\Leftrightarrow\hept{\begin{cases}ED//BC\left(1\right)\\ED=\frac{1}{2}BC\left(2\right)\end{cases}}\)
Xét \(\Delta AGB\)có:
I là trung điểm của AG(GT)
K là trung điểm của BG(GT)
\(\Rightarrow IK\)là đường trung bình của \(\Delta AGB\)
\(\Rightarrow\hept{\begin{cases}IK//BC\left(3\right)\\IK=\frac{1}{2}BC\left(4\right)\end{cases}}\)
Từ (1) và (3)\(\Rightarrow IK//DE\)
Từ (2) và(4)\(\Rightarrow IK=DE\)