Bài 28 (trang 116 SGK Toán 9 Tập 1)
Cho góc $xAy$ khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc $xAy$ nằm trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)
\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)
\(=AB+AC=2AB\)
Bạn tự vẽ hình nha
a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).
Xét ΔCBD có :
CI = IB
CO = OD (bán kính)
⇒ BD // OI (OI là đường trung bình của tam giác BCD).
Vậy BD // AO.
c) Theo định lí Pitago trong tam giác vuông OAC:
AC^2 = OA^2 – OC^2 = 42 – 22 = 12
=> AC = √12 = 2√3 (cm)
\(\sin OAC=\frac{OC}{OA}=\frac{1}{2}\)
=> OAC =30 độ
mà BAC =2OAC
=. BAC =60
Tam giác ABC cân có BAC = 60 => Tam giác ABC đều
+> AB=AC=BC=2√3 (cm)
K cho mk nh
câu A : AB = AC ( theo tính chất của đường tiếp tuyến ) suy ra : tam giác ABC cân tại A , OA là đường phân giác cũng là đường cao vậy OA vuông góc với BC
Hơi tiết bạn đã đăng bài này đúng bài nhưng sai người và sai thời điểm ! chúc bạn may mắn lần sau!!
Hình tự vẽ nha bài dễ thui
a) Vì \(\hept{\begin{cases}BE\perp AC&AD\perp BC&\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{BEC}=90^0\\\widehat{ADC}=90^0\end{cases}}\)
Xét tứ giác CDHE có: \(\widehat{HEC}+\widehat{HDC}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác CDHE
\(\Rightarrow CDHE\)nội tiếp ( dhnb )
b) Ta có: \(\hept{\begin{cases}DK\perp BE\\EC\perp BE\end{cases}\Rightarrow}DK//EC\)
\(\Rightarrow\widehat{BDK}=\widehat{BCE}\)( 2 góc đồng vị )
Xét tam giác DKH và tam giác BEC có:
\(\hept{\begin{cases}\widehat{BKD}=\widehat{BEC}=90^0\\\widehat{BDK}=\widehat{BCE}\left(cmt\right)\end{cases}\Rightarrow\Delta DKH~\Delta BEC\left(g-g\right)}\)
1) Vì E là giao điểm của OD và AC; AD,DC là tiếp tuyến của (O)
\(\Rightarrow OD\perp AC\)tại E
\(\Rightarrow\widehat{CEO}=90^0\)
Lại có: CH vuông góc với AB \(\Rightarrow\widehat{CHO}=90^0\)
Xét tứ giác OECH có: \(\widehat{CEO}+\widehat{CHO}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác OECH
\(\Rightarrow OECH\)nội tiếp (dhnb )
2) \(2\widehat{BCF}+\widehat{BFC}=sđ\widebat{BC}+\frac{1}{2}\left(sđ\widebat{AC}-sđ\widebat{BC}\right)\)
\(=\frac{1}{2}\left(sđ\widebat{AC}+sđ\widebat{BC}\right)\)
\(=90^0\left(đpcm\right)\)
3) Kẻ tiếp tuyến By của (O). By cắt DC tại P. Gọi K là giao điểm của BC và OP.
Ta có: AC // OP ( cùng vuông góc với BC )
Xét tam giác DOP có : EC // OP
\(\Rightarrow\frac{DE}{DO}=\frac{DC}{DP}\)(1)
Lại có: CH // BP ( cùng vuông góc với AB )
Xét tam giác DBP có: CM // BP
\(\Rightarrow\frac{DM}{DB}=\frac{DC}{DP}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{DE}{DO}=\frac{DM}{DB}\)
Xét tam giác DOB có \(\frac{DE}{DO}=\frac{DM}{DB}\left(cmt\right)\); E thuộc OD , M thuộc DB
\(\Rightarrow EM//OB\)ta let đảo
Hay EM // AB ( đpcm)
Gọi \(x\) ( km/giờ) là vận tốc của xe thứ nhất. \(\left(x>0\right)\)
Khi đó vận tốc của xe lửa thứ hai là \(x+5\)( km/giờ)
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)
Vì xe lửa thứ hai đi sau 11 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 11 giờ. Ta có phương trình:
\(\frac{450}{x}\)\(-\)\(\frac{450}{x+5}\)\(=1\)\(\Leftrightarrow x^2+5x-2250=0\)
Giải phương trình ta được: \(x_1=45\)( nhận ) \(;x_2=-50\)( loại )
Vậy: Vận tốc của xe lửa thứ nhất là \(45\) km/giờ
Vận tốc của xe lửa thứ hai là \(50\) km/giờ.
Gọi vận tốc của xe lửa thứ nhất là: x (km/h) (x > 0)
⇒ vận tốc xe lửa thứ hai là: x + 5 (km/h)
Do hai xe gặp nhau ở chính giữa quãng đường, với quãng đường từ Hà Nội đến Bình Sơn dài 900 km nên quãng đường mỗi xe đi được kể từ khi bắt đầu đến khi hai xe gặp nhau là 900: 2= 450 ( km)
Câu 3: Tâm của đường tròn ( O) tiếp xúc với 2 cạnh đường Ay , Ax nằm trên đường phân giác OA
Gọi OO là tâm của một đường tròn bất kì tiếp xúc với hai cạnh của góc xAyxAy.
Khi đó, \widehat{OAx}=\widehat{OAy}OAx=OAy
Vậy tâm của các đường tròn tiếp xúc với hai cạnh của góc xAyxAy nằm trên tia phân giác của góc xAyxAy.