K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5 2024

Xếp 2 người Việt cạnh nhau: 2 cách

Xếp 3 người Pháp cạnh nhau: \(3!=6\) cách

Với người Nhật, có 2 trường hợp thỏa mãn:

TH1: 4 người Nhật ngồi cạnh nhau: có \(4!\) cách

Hoán vị bộ Nhật - Pháp - Việt có \(3!\) cách

TH2: 4 người Nhật chia làm 2 cặp và 2 cặp này ko ngồi cạnh nhau

Chia 4 người Nhật làm 2 cặp: \(A_4^2.A_2^2=24\) cách (đã xếp thứ tự)

Xếp 2 nhóm Việt và Pháp: \(2!=2\) cách

2 nhóm Việt - Pháp tạo ra 3 khe trống, xếp 2 nhóm người Nhật vào 3 khe trống: \(C_3^2=3\) cách

\(\Rightarrow2.6.\left(4!.3!+24.2.3\right)=3456\) cách

NV
4 tháng 5 2024

Điều này tương đương ko có cạnh nào của lục giác được tạo ra từ 2 đỉnh liền nhau của đa giác

Chọn 1 đỉnh \(A_1\) có 108 cách

Chọn 5 đỉnh còn lại \(A_2A_3A_4A_5A_6\) sao cho giữa \(A_1A_2\) có \(x_1\) đỉnh, giữa \(A_2A_3\) có \(x_2\) đỉnh, ..., giữa \(A_6A_1\) có \(x_6\) đỉnh với \(x_1;x_2;...;x_6\) là các số nguyên dương

\(\Rightarrow x_1+x_2+x_3+x_4+x_5+x_6=108-6=102\)

Theo nguyên lý chia kẹo Euler, pt trên có \(C_{101}^5\) bộ nghiệm nguyên dương

\(\Rightarrow\dfrac{108.C_{101}^5}{6}\) lục giác thỏa mãn

4 tháng 5 2024

1a) B

b) D

4 tháng 5 2024

B. 120 cây

 

4 tháng 5 2024

Số kẹo ban đầu của My là :

5 x \(\dfrac{1}{5}\) = 1 ( cái )

Số kẹo của My sau khi được cho thêm 9 cái là :

9 + 1 = 10 ( cái )

Lúc này tôi có số cái kẹo là :

10 x \(\dfrac{2}{5}\) = 4 ( cái )

Đáp số : 4 cái

4 tháng 5 2024

 Cho phương trình bậc hai \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0

a; Chứng minh phương trình luôn có hai nghiệm phân biệt.

Ta có \(x^2\) + 2\(x\) - m2 + 2m - 3 = 0

    ⇒ △, = 12  - ( - m2 + 2m - 3) = 1 + m2 - 2m + 3 = (m - 1)2 + 3 

      (m - 1)2 ≥ 0 ∀ m; ⇒ (m - 1)2 + 3 ≥ 3 ∀ m

       ⇒△, = (m -1)2 + 3 ≥ 3 > 0 ∀ m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m.

b; Theo chứng minh trên ta có phương trình đã cho luôn có hai nghiệm phân biệt với mọi giá trị của m, áp dụng hệ thức Vi-et ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1.x_2=-m^2+2m-3\end{matrix}\right.\) (1)

Mặt khác ta có: |\(x_1\) - \(x_2\)| = 4 ⇒ (|\(x_1\) - \(x_2\)|)2 = 4⇒ (\(x_1\) - \(x_2\))2  = 16

                         (\(x_1\) + \(x_2\))2 - 4\(x_2\)\(x_2\) = 16 (2)

Thay (1) vào (2) ta có: (-2)2 - 4.(- m2 + 2m - 3) = 16

                                       4 + 4m2 - 8m + 12  = 16

                                             4m2 - 8m = 16 - 12 - 4

                                             4m2 - 8m = 0

                                              4m.(m - 2) = 0

                                                \(\left[{}\begin{matrix}m=0\\m-2=0\end{matrix}\right.\)

                                                \(\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Vậy để phương trình đã cho có hai nghiệm phân biệt thỏa mãn đề bài thì 

\(\in\) {0; 2}

                                        

                   

 

 

      

 

          

 

NV
4 tháng 5 2024

a.

\(\Delta'=1-\left(-m^2+2m-3\right)=m^2-2m+4=\left(m-1\right)^2+3>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2+2m-3\end{matrix}\right.\)

\(\left|x_1-x_2\right|=4\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=16\)

\(\Leftrightarrow4-4\left(-m^2+2m-3\right)=16\)

\(\Leftrightarrow m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

4 tháng 5 2024

a/ \(\dfrac{3-\sqrt{3}}{3+\sqrt{3}}=\dfrac{\left(3-\sqrt{3}\right)^2}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{9-6\sqrt{3}+3}{9-3}\)

\(=\dfrac{6\left(2-\sqrt{3}\right)}{6}=2-\sqrt{3}\)

b/ ĐKXĐ: \(x>0\)

\(\dfrac{x-2}{\sqrt{x}}=1\)

\(\Rightarrow x-2=\sqrt{x}\)

\(\Leftrightarrow x^2-4x+4=x\)

\(\Leftrightarrow x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=4\left(tmdk\right)\end{matrix}\right.\)

b: ĐKXĐ: x>0

\(\dfrac{x-2}{\sqrt{x}}=1\)

=>\(x-2=\sqrt{x}\)

=>\(x-\sqrt{x}-2=0\)

=>\(\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)=0\)

=>\(\sqrt{x}-2=0\)

=>x=4(nhận)

4 tháng 5 2024

        Đây là toán nâng cao chuyên đề chuyển động, cấu trúc nâng cao thi chuyên, thi học sinh giỏi các cấp, thi violympic. Hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này bằng tỉ số vận tốc như sau:

                                Giải:

           Thời gian xe máy đi từ B về đến C là:

            9 giờ 36 phút - 7 giờ 30 phút  = \(\dfrac{21}{10}\) (giờ)

  Vì cùng một quãng đường thì thời gian tỉ lệ nghịch với vận tốc nên nếu đi bằng ô tô từ B đến C hết thời gian là:

                       \(\dfrac{21}{10}\) : \(\dfrac{5}{3}\) = \(\dfrac{63}{50}\) (giờ)

 Thời gian ô tô đi từ A đến C là:

             9 giờ 36 phút - 6 giờ 45 phút = 2 giờ 51 phút

                      2 giờ 51 phút = \(\dfrac{57}{20}\) giờ 

Nếu đi bằng xe ô tô trên cả quãng đường từ A đến B thì đi hết thời gian là:

                     \(\dfrac{57}{20}\) + \(\dfrac{63}{50}\) = \(\dfrac{411}{100}\) (giờ)

Vận tốc của ô tô là: 226,05 : \(\dfrac{411}{100}\) = 55 (km/h)

Vận tốc của xe máy là: 55 : \(\dfrac{5}{3}\) = 33 (km/h)

Đáp số: Vận tốc xe ô tô là: 55km/h

             Vận tốc xe máy là là: 33 km/h

                 

                    

 

 

 

         

       

 

         

 

 

                  

4 tháng 5 2024

1) Em ghi đề cho chính xác

2) \(\left(-882\right).124,35-\left(-882\right).24,35\)

\(=-882.\left(124,35-24,35\right)\)

\(=-882.100\)

\(=-88200\)

3) \(3,4.\left(-23,68\right)-3,4.45,12+\left(-31,2\right).3,4\)

\(=3,4.\left(-23,68-45,12+31,2\right)\)

\(=3,4.\left(-100\right)\)

\(=-340\)

4) \(5,42-\left(-2,49-4,58\right)+\left(10-2,49\right)\)

\(=5,42+2,49+4,58+10-2,49\)

\(=\left(5,42+4,58\right)+\left(2,49-2,49\right)+10\)

\(=10+0+10\)

\(=20\)

4 tháng 5 2024

Giúp đang cần gấp