Mn giúp mk câu d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
b, Bảng tần số :
Giá trị (x ) | Tần số ( n ) |
3 | 2 |
4 | 4 |
5 | 3 |
6 | 6 |
7 | 10 |
8 | 11 |
9 | 3 |
10 | 1 |
N = 40 |
Xét tam giác OBM và tam giác OAM có
OMA=OMB=90(gt)
OM cạnh chung
AOM=BOM(gt)
Do đó tam giác OBM=OAM(CH-GN) (1)
--> Cạnh AM=MB (2 cạnh tương ứng)
b) Từ (1) tcó: OA=OB(2 cạnh tương ứng)
---> Tam giác OAB là tam giác cân
:33
hình you tự vẽ nha:
ta có: \(\Delta ABC\) cân tại A nên ta có: \(AB=AC\)VÀ \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{HBC}=\widehat{KCM}\)
NH là trung trực của AB nên \(HA=HB=\frac{1}{2}AB\)
TƯƠNG TỰ THÌ \(HK=HC=\frac{1}{2}AC=\frac{1}{2}AB\left(AB=AC\right)\)
\(\Rightarrow HB=KC=HA=AK\left(=\frac{1}{2}AB\right)\)
xét \(\Delta HBN\)và \(\Delta KCM\)
\(HB=KC\left(cmt\right)\)
\(\widehat{HBN}=\widehat{KCM}\left(cmt\right)\)
\(\widehat{BHN}=\widehat{CKM}=90^0\)
\(\Rightarrow\Delta HBN=\Delta KCM\left(g.c.g\right)\Rightarrow HN=KM\)(2 cạnh tương ứng)
xét \(\Delta AHN\) và \(\Delta AKM\) CÓ:
\(HN=KM;AH=AK\left(CMT\right)\)
\(\widehat{AHN}=\widehat{AKB}=90^0\)
\(\Delta AHN=\Delta AKM\Rightarrow MA=NA\left(ĐPCM\right)\)(2 CẠNH TƯƠNG ỨNG)(1)
b)gọi giao điểm của AI và BC là O(\(O\in BC\))
xét \(\Delta AHI\) VÀ \(\Delta AKI\) CÓ:
\(AH=AK\left(CMT\right)\)
\(\widehat{AHI}=\widehat{AKI}=90^0\)
\(AI\) CHUNG
\(\Rightarrow\)\(\Delta AHI=\Delta AKI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{HAI}=\widehat{KAI}\Rightarrow\widehat{BAO}=\widehat{CAO}\)(2 góc tương ứng)
từ đó ta dễ dàng CM \(\Delta BAO=\Delta CAO\left(c.g.c\right)\left(AB=AC;\widehat{BAO}=\widehat{CAO};AO-chung\right)\)
\(\Rightarrow\widehat{AOB}=\widehat{AOC}\)
MÀ\(\widehat{AOB}+\widehat{AOC}=180^0\Rightarrow\widehat{AOB}=\widehat{AOC}=90^0\Rightarrow AO\perp BC\)HAY \(AI\perp BC\)
MÀ TAM GIÁC ABC cân tại A nên theo TC của tam giác cân thì AI sẽ là đường trung trực của BC
Lời giải:
a) Ta có: {∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900{∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900
⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED
⇔∠BDA=∠BDE⇔∠BDA=∠BDE
Xét tam giác ABDABD và EBDEBD có:
⎧⎪⎨⎪⎩BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g){BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g)
Ta có đpcm.
b) Theo phần a △ABD=△EBD⇒BA=BE△ABD=△EBD⇒BA=BE
Do đó tam giác BAEBAE cân tại BB
⇒∠BEA=∠BAE⇒∠BEA=∠BAE
Mà ∠BEA+∠BAE=1800−∠ABE=1800−600=1200∠BEA+∠BAE=1800−∠ABE=1800−600=1200
Suy ra ∠BEA=∠BAE=600=∠ABE∠BEA=∠BAE=600=∠ABE
Do đó tam giác ABEABE đều
c)
Có: cosˆABC=ABBC⇔cos600=5BC⇔12=5BCcosABC^=ABBC⇔cos600=5BC⇔12=5BC
⇔BC=10⇔BC=10 (cm)
`Answer:`
Sửa đề phần c: Chứng minh KF//BC.
C H B A F K
a. Xét `\triangleAHB` và `\triangleAHC`
`AH` chung
`\hat{AHB}=\hat{AHC}=90^o`
`AB=AC`
`=>\triangleAHB=\triangleAHC(ch-cgv)`
b. Xét `\triangleFAH` và `\triangleKAH`
`AH` chung
`\hat{FAH}=\hat{KAH}`
`\hat{AFH}=\hat{AKH}=90^o`
`=>\triangleFAH=\triangleKAH(ch-gn)`
`=>HK=HF`
c. Theo phần b. `\triangleFAH=\triangleKAH`
`=>AF=AK`
`=>\triangleAFK` cân ở `A`
Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`
`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)
hình tự vẽ nhé.
xét: \(\Delta AHB\) VÀ \(\Delta AHC\) CÓ:
\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)
\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)
b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)
XÉT: \(\Delta KBH\)VÀ \(\Delta FCH\) CÓ:
\(BH=CH\left(cmt\right)\)
\(\widehat{BKH}=\widehat{CFH}=90^0\)
\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)
\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)
\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)
c) ta có: \(AB=AC;;BK=FK\left(cmt\right)\)
\(\Rightarrow AB-BK=AC-FC\)
\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A
\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)
\(A=2xy^2\left(\dfrac{1}{16}x^2y^6\right)=\dfrac{1}{8}x^3y^8\)
hệ số 1/8 ; biến x^3y^8 ; bậc 11
b, Thay x = -4 ; y = -1 ta được
\(\dfrac{-64.1}{8}=-8\)
c, Thay x = 3 ta được \(\dfrac{27y^8}{8}=\dfrac{27}{8}\Leftrightarrow y=1\)