cho x,y,z>0 thỏa mãn ab+bc+ca=3abc.Tìm min \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ac}{a+c+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha, mình không biết vẽ hình trên này
* Cách vẽ: Vẽ trục tọa độ Oxy
Vẽ đường thẳng y = -3 (đường thẳng này đi qua điểm -3 trên trục Oy và song song với trục Ox)
Vẽ parabol \(y=mx^2\) nằm ở nửa mặt phẳng bờ Ox và âm của Oy (Khi đó parabol và đường thẳng y = -3 mới có điểm chung)
Gọi giao của Parabol với đường thẳng nói trên là A và B (A thuộc phần mặt phẳng có bờ là tia đối của tia Ox,Oy còn B là điểm còn lại đối xứng với A qua Oy)
AB cắt Oy tại H
* Bài làm:
Theo đề bài parabol và đường thẳng y = -3 cắt nhau tạo ra tam giác có diện tích là 10
\(\Rightarrow S_{OAB}=10\Leftrightarrow\frac{1}{2}\cdot\left|-3\right|\cdot AB=10\)
\(\Rightarrow AB=\frac{20}{3}\)\(\Rightarrow AH=BH=\frac{10}{3}\Rightarrow\left|x\right|=\frac{10}{3}\)
Khi đó tọa độ giao điểm của parabol và đường thẳng là \(\left(\frac{10}{3};-3\right);\left(-\frac{10}{3};-3\right)\)
Thay vào công thức parabol ta được: \(-3=\left(\frac{10}{3}\right)^2\cdot m\Rightarrow m=-\frac{27}{100}\)
Vậy \(m=-\frac{27}{100}\)
sửa đề, 2 nghiệm phân biệt nhé
Để pt có 2 nghiệm pb thì \(\Delta>0\)
\(\Delta=16-4\left(-m^2-5\right)=16+4m^2+20=4m^2+36>0\forall m\)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=-m^2-5\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=16\Rightarrow x_1^2+x_2^2=16-2\left(-m^2-5\right)=2m^2+26\)
bình phương 2 hệ thức có dạng \(\left(x_1-x_2\right)^2=16\Rightarrow x_1^2+x_2^2-2x_1x_2=16\)
\(\Leftrightarrow2m^2+26-2\left(-m^2-5\right)=16\)
\(\Leftrightarrow4m^2+36=16\Leftrightarrow4m^2=-20\Leftrightarrow m^2=-5\)vô lí
\(x-2\sqrt{x-2}-5=0\)
\(\Leftrightarrow x-2-2\sqrt{x-2}+1-4=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2-4=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1-2\right)\left(\sqrt{x-2}-1+2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}-3=0\\\sqrt{x-2}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=11\\x\in\theta\end{cases}}}\)
Đặt \(x_1=x;x_2=y\)
\(\frac{x}{y^2}+\frac{y}{x^2}=m-1\Leftrightarrow\frac{x^3+y^3}{x^2y^2}=m-1\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=\left(m-1\right)\left(xy\right)^2\)
thay vi et vô thooi :))
Ta có: \(\sqrt{x^2-2x}=\sqrt{x^2-2x}.1\le\frac{x^2-2x+1}{2}\)
\(\Rightarrow\frac{x-1}{\sqrt{x^2-2x}}\ge\frac{2\left(x-1\right)}{\left(x-1\right)^2}=\frac{2}{x-1}\)
\(A=x+\frac{x-1}{\sqrt{x^2-2x}}\ge x-1+\frac{2}{x-1}+1\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}+1=1+2\sqrt{2}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}x^2-2x=1\\x-1=\frac{2}{x-1}\\x>2\end{cases}}\Leftrightarrow x=1+\sqrt{2}\).
\(\left(\sqrt{x}+\sqrt{y}\right)^2-\sqrt{3}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{xy}\)
\(=x+2\sqrt{xy}+y-\sqrt{3x}-\sqrt{3y}-\sqrt{xy}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-\sqrt{3x}-\sqrt{3y}+3\sqrt{xy}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{3x}\left(\sqrt{3y}-1\right)-\sqrt{3y}+1-1\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{3x}-1\right)\left(\sqrt{3y}-1\right)-1\)\(\ge-1\forall x,y\)
Dấu "=" xảy ra <=> x=y=1/3
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)
\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1
Bài làm :
Ta có :
\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT cosi cho các số không âm ; ta được :
\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)
\(\Rightarrow x+y\ge2\)
Ta có :
\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi x=y=1
Vậy MinP = 2 <=> x=y=1
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) \(\left(x,y,z>0\right)\)
Theo đề \(ab+bc+ca=3abc\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{3}{xyz}\)
\(\Rightarrow x+y+z=3\)
Và \(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(=\sqrt{\frac{\frac{1}{xy}}{\frac{1}{x}+\frac{1}{y}+1}}+\sqrt{\frac{\frac{1}{yz}}{\frac{1}{y}+\frac{1}{z}+1}}+\sqrt{\frac{\frac{1}{zx}}{\frac{1}{z}+\frac{1}{x}+1}}\)
\(=\frac{1}{\sqrt{x+y+xy}}+\frac{1}{\sqrt{y+z+yz}}+\frac{1}{\sqrt{z+x+zx}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\) (Cauchy Schwarz)
Ta có: \(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\)
\(=\sqrt{\left(\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}\right)^2}\)
\(\le\sqrt{3\left(x+y+xy+y+z+yz+z+x+zx\right)}\)
\(=\sqrt{\left[2\left(x+y+z\right)+\left(xy+yz+zx\right)\right]}\)
\(\le\sqrt{6+\frac{\left(x+y+z\right)^2}{3}}=\sqrt{6+\frac{3^2}{3}}=3\)
\(\Rightarrow\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{bc}{b+c+1}}+\sqrt{\frac{ca}{c+a+1}}\)
\(\ge\frac{9}{\sqrt{x+y+xy}+\sqrt{y+z+yz}+\sqrt{z+x+zx}}\ge\frac{9}{3}=3\)
Dấu "=" xảy ra khi: \(x=y=z=1\Rightarrow a=b=c=1\)
cảm ơn bạn :>