(2x-1)3 = -8 Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + (-5) + 8 + (-11) + 14 + (-17) + ...+ 98 + (-101)
Số hạng thứ 1; thứ 3; thứ 5; ...;thứ 33 trong A là: 2; 8; 14; ...; 98
Số hạng thứ 2; 4; 6; ...; thứ 34 trong A là: -5; -11; ...; -101
=> Số hạng thứ n = 2 + 6k (k = 0 đến 16) nếu n lẻ và n = - (5 + 6k) ( k = 1 đến 16) nếu n chẵn
b) A = (2 - 5) + (8 - 11) + ....+ (98 - 101) = (-3) + (-3) + ...+(-3) (Từ 2 đến 101 có 34 số nên có 17 cặp => có 17 số -3)
=> A = (-3).17 = -51
Trung bình cộng hai số a và 9a bằng (a+ 9a) : 2 = 5a
5a chia hết cho 3 <=> a chia hết cho 3. Vì a dương nhỏ nhất nên a = 3
\(\frac{a}{b}=\frac{a\left(b+2012\right)}{b\left(b+2012\right)}=\frac{ab+2012a}{b\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{\left(a+2012\right)b}{b\left(b+2012\right)}=\frac{ab+2012b}{b\left(b+2012\right)}\)
Vì b > 0 nên b(b + 2012) > 0
a < 0 ; b > 0 nên a < b => 2012a < 2012b => ab + 2012a < ab + 2012b => \(\frac{ab+2012a}{b\left(b+2012\right)}<\frac{ab+2012b}{b\left(b+2012\right)}\)
=> \(\frac{a}{b}<\frac{a+2012}{b+2012}\)
Để (x^2+7x+2)/ (x+7) = x+2/(x+7) nguyên
<=> 2 chia hết cho x+7 => x \(\in\) {-6,-8,-5,-9}
Đáp số : 4 giá trị
Chia hình vuông cạnh 5 cm thành 25 hình vuông nhỏ cạnh 1 cm. Có 76 điểm nằm trong 25 hình vuông nhỏ nên tồn tại 1 hình vuông có ít nhất là \(\left[\frac{76}{25}\right]+1\)= 4 điểm. Đường chéo của hình vuông có độ dài là \(\sqrt{2}\)
Vậy nửa đường chéo dài : \(\sqrt{2}\div2=0,70...<0,75=\frac{3}{4}\)
Ta vẽ đường tròn có tâm giao điểm của 2 đường chéo và bán kính =3/4 thì cả hình vuông nằm trong hình tròn. Vậy tồn tại 4 điểm trong các điểm đó thuộc một hình tròn có bán kính 3/4 cm.
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
\(\sqrt{99}<\sqrt{100}=10\)
Suy ra: \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
A B C O M N P
Áp dụng ĐL Pi ta go trong
tam giác vuông OAP có: AP2 = OA2 - OP2
Trong tam giác vuông OAN có: AN2 = OA2 - ON2
Tương tự, với các tam giác vuông OBP; OBM; OCM; OCN
Ta có: AN2 + BP2 + CM2 = (OA2 - ON2) + (OB2 - OP2) + (OC2 - OM2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
AP2 + BM2 + CN2 = (OA2 - OP2) + (OB2 - OM2) + (OC2 - ON2) = (OA2 + OB2 + OC2) - (ON2 + OP2 + OM2)
=> AN2 + BP2 + CM2 = AP2 + BM2 + CN2
(2x-1)3 = (-2)3
<=> 2x-1 = -2
2x = -2+1
2x = -1
x = -1:2
x = -0,5