Tìm x biết 1/1*2 + 1/2*3 + ... + 1/x(x+1)=2022/2023
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27 . 121 - 87 . 27 + 73 .54
= 27 . 121 - 87 . 27 + 73 . 2 . 27
= 27 . (121 - 87 + 73 . 2)
= 27 . 180
= 4860
\(27\cdot121-87\cdot27+73\cdot54\)
\(=27\cdot121-87\cdot27+146\cdot27\)
\(=27\left(121-87+146\right)\)
\(=27\cdot180\)
\(=4860\)
\(x\cdot2^2=2^7\)
\(\Rightarrow x=\dfrac{2^7}{2^2}\)
\(\Rightarrow x=2^{7-2}\)
\(\Rightarrow x=2^5\)
\(\Rightarrow x=32\)
\(\left(x-1\right).3=15\\ =>x-1=5\\ =>x=6\)
\(20:\left(x+1\right)-3=2\\ =>20:\left(x+1\right)=5\\ =>x+1=4\\ =>x=3\)
\(\left(x-1\right).3=15\)
\(x-1=15:3\)
\(x-1=5\)
\(x=5+1\)
\(x=6\)
Vậy \(x=6\)
\(20:\left(x+1\right)-3=2\)
\(\left(x+1\right)-3=20:2\)
\(\left(x+1\right)-3=10\)
\(x+1=10-3\)
\(x+1=7\)
\(x=7-1\)
\(x=6\)
Vậy \(x=6\)
\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)
Vì \(m,n\in A\) \(\Rightarrow B\in A\)
Vậy \(m=7\) hoặc \(m=5\)
\(n=5\) hoặc \(n=7\)
\(33\times77+66\times77+77\)
\(=77\times\left(33+66+1\right)\)
\(=77\times100\)
\(=7700\)
1+3+5+7+...+2013
số số hang : (2013-1):2+1=1007
Vậy Ta có tổng là : (2013+1).1007:2=1014049
Số số hạng:
(2013 - 1) : 2 + 1 = 1007 (số)
1 + 3 + 5 + 7 + ... + 2013
= (2013 + 1) . 1007 : 2
= 1014049
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)