Giải hpt \(\hept{\begin{cases}\frac{x}{x-1}+\frac{y}{y+1}=\frac{3}{2}\\\frac{3}{x-1}+\frac{4}{y+1}=5\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=0 không là nghiệm.
pt <=> (x2+3)/x -2 = \(\sqrt{\frac{\left(x^2+3\right)}{x}}\)
<=> (x2+3)/x - \(\sqrt{\frac{\left(x^2+3\right)}{x}}\)-2 =0
<=> \(\sqrt{\frac{\left(x^2+3\right)}{x}}\)= 2
<=> x2 - 4x +3 =0
<=> x=1 V x= 3
\(\sqrt{\frac{\left(x^2+3\right)}{x}}\)
1/
\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)
Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)
2/
a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt
Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)
b/ Khi m=-4
\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)
Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)
Để hệ pt có nghiệm duy nhất khi \(3\ne\frac{2}{m}\Leftrightarrow3m\ne2\Leftrightarrow m\ne\frac{2}{3}\)
Với \(m\ne\frac{2}{3}\)hệ pt có nghiệm suy nhất
\(\hept{\begin{cases}3x+2y=m\\x+my=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2y=m\\3x+3my=9\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2-3m\right)y=m-9\\x+my=3\end{cases}}}}\)
\(\left(1\right)\Rightarrow y=\frac{m-9}{2-3m}\)
\(\left(2\right)\Rightarrow x=3-my=3-\frac{m^2-9m}{2-3m}=\frac{6-9m-m^2+9m}{2-3m}=\frac{6-m^2}{2-3m}\)
Thay vào biểu thức trên ta được :
\(\frac{18-3m^2}{2-3m}+\frac{4m-36}{2-3m}=-5\Rightarrow-18-3m^2+4m=-10+15m\)
\(\Leftrightarrow-3m^2-11m-8=0\Leftrightarrow\left(3m+8\right)\left(m+1\right)=0\Leftrightarrow m=-\frac{8}{3};m=-1\)( tmđk )
check lại hộ mình nhé =)
a, \(\sqrt{7-x}< 2\)ĐK :\(x\le7\)
bình phương 2 vế ta được :
\(\Leftrightarrow7-x< 4\Leftrightarrow-x< -3\Leftrightarrow x>3\)
Kết hợp với đk vậy \(3< x\le7\)
b, \(\sqrt{x-3}>3\)ĐK : \(x\ge3\)
bình phương 2 vế ta được :
\(\Leftrightarrow x-3>9\Leftrightarrow x>12\)
kết hợp với đk vậy \(3\le x< 12\)
\(\frac{x+2\sqrt{x}+1}{x-1}+\frac{x-1}{x-2\sqrt{x}+1}\left(đk:x\ne1;x\ge0\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\left(x+1\right)}{x-1}=\frac{2x+2}{x-1}\)
\(\frac{x+2\sqrt{x}+1}{x-1}+\frac{x-1}{x-2\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}\pm1\right)}+\frac{\left(\sqrt{x}\pm1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}+2}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
ĐK: \(x\ne1,y\ne-1\).
\(\frac{x}{x-1}+\frac{y}{y+1}=\frac{x-1+1}{x-1}+\frac{y+1-1}{y+1}=1+\frac{1}{x-1}+1-\frac{1}{y+1}=2+\frac{1}{x-1}-\frac{1}{y+1}\)
\(\Rightarrow\frac{1}{x-1}-\frac{1}{y+1}=\frac{3}{2}-2=-\frac{1}{2}\)
Đặt \(\frac{1}{x-1}=X,\frac{1}{y+1}=Y\).
Ta có hệ: \(\hept{\begin{cases}X-Y=-\frac{1}{2}\\3X+4Y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}Y=X+\frac{1}{2}\\3X+4\left(X+\frac{1}{2}\right)=5\end{cases}}\Leftrightarrow\hept{\begin{cases}X=\frac{3}{7}\\Y=\frac{13}{14}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-1}=\frac{3}{7}\\\frac{1}{y+1}=\frac{13}{14}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{10}{3}\\y=\frac{1}{13}\end{cases}}\).(tm).