Anh Minh mua 1 vé bay thẳng cho chuyến thứ nhất và 1 vé quá cảnh cho chuyến thứ 2, tổng số tiền phải trả là 2420 USD đã bao gồm 10% thuế VAT. Biết vé quá cảnh có giá rẻ hơn vé bay thẳng 20%. Hỏi giá tiền của mỗi vé là bao nhiêu USD khi chưa có thuế VAT?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Khổ 4: Ước nguyện của tác giả và cảm xúc khi rời xa.
- Cảm xúc bộc lộ trực tiếp (thương trào nước mắt) diễn tả sự lưu luyến, nhớ thương.
- Điệp ngữ " muốn làm" : thể hiện ước nguyện chân thành, gần gũi, thiết tha, mãnh liệt.
- Làm con chim, đóa hoa, cây tre. Chúng đều là sự vật nhỏ bé, bình dị nhưng mang nhiều ý nghĩa => Muốn được ở mãi bên Bác - người cha già kính yêu của dân tộc Việt Nam.
- Hình ảnh cây tre trung hiếu ( nghệ thuật: nhân hóa, ẩn dụ): thể hiện lòng kính yêu, trung thành, biết ơn vô hạn cuat nhà thơ đối với Bác.

Câu 1:
\(C_2H_4+H_2O\underrightarrow{t^o,xt}C_2H_5OH\)
\(C_2H_5OH+O_2\underrightarrow{^{mengiam}}CH_3COOH+H_2O\)
\(CH_3COOH+C_2H_5OH⇌CH_3COOC_2H_5+H_2O\) (xt: H2SO4 đặc, to)
(4) \(Zn+2CH_3COOH\rightarrow\left(CH_3COO\right)_2Zn+H_2\)
Câu 2:
a, \(n_{C_2H_4}=\dfrac{8,96}{22,4}=0,4\left(mol\right)\)
PT: \(C_2H_4+H_2O\underrightarrow{^{t^o,xt}}C_2H_5OH\)
Theo PT: \(n_{C_2H_5OH}=n_{C_2H_4}=0,4\left(mol\right)\Rightarrow m_{C_2H_5OH}=0,4.46=18,4\left(g\right)\)
b, \(V_{C_2H_5OH}=\dfrac{18,4}{0,8}=23\left(ml\right)\)
⇒ Độ rượu = \(\dfrac{23}{23+150}.100\approx13,3^o\)
c, \(n_{CH_3COOH}=\dfrac{120}{60}=2\left(mol\right)\)
PT: \(CH_3COOH+C_2H_5OH⇌CH_3COOC_2H_5+H_2O\) (xt: H2SO4 đặc, to)
Xé tỉ lệ: \(\dfrac{2}{1}>\dfrac{0,4}{1}\), ta được CH3COOH dư.
Theo PT: \(n_{CH_3COOC_2H_5\left(LT\right)}=n_{C_2H_5OH}=0,4\left(mol\right)\)
Mà: H = 95%
\(\Rightarrow n_{CH_3COOH\left(TT\right)}=0,4.95\%=0,38\left(mol\right)\)
\(\Rightarrow m_{CH_3COOC_2H_5\left(TT\right)}=0,38.88=33,44\left(g\right)\)

Áp dụng BĐT Cauchy cho 3 số thực dương \(xy,yz,zx\), ta có \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\). Do \(xy+yz+zx=3xyz\) nên\(3xyz\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow3\sqrt[3]{\left(xyz\right)^2}\left(\sqrt[3]{xyz}-1\right)\ge0\) \(\Leftrightarrow\sqrt[3]{xyz}\ge1\) \(\Leftrightarrow xyz\ge1\)
ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}xy=yz=zx\\xy+yz+zx=3xyz\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)
Ta có \(\dfrac{x}{1+y^2}=\dfrac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy^2}{2y}\)\(=x-\dfrac{xy}{2}\)
Tương tự, ta có \(\dfrac{y}{1+z^2}\ge y-\dfrac{yz}{2}\) và \(\dfrac{z}{1+x^2}\ge z-\dfrac{zx}{2}\). Từ đó suy ra \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge x+y+z-\dfrac{xy+yz+zx}{2}\) \(=x+y+z-\dfrac{3}{2}xyz\) . Từ đây suy ra \(Q\ge x+y+z\ge\sqrt[3]{xyz}\ge1\). ĐTXR \(\Leftrightarrow x=y=z=1\).
Vậy GTNN của \(Q\) là \(1\) đạt được khi \(x=y=z=1\)
Dạ thưa thầy, chỗ kia con sửa là \(Q\ge x+y+z\ge3\sqrt[3]{xyz}\ge3\) ạ. GTNN của Q là 3 khi \(x=y=z=1\)

1) -x2 +4x -3=0
=> -x 2 + 3x +x - 3=0
=> - x ( x - 3) + ( x -3 ) =0
=> ( x - 3) ( 1 - x )=0
=> \(\left[{}\begin{matrix}x-3=0\\1-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

1. Vì (d) cắt trục hoành tại điểm có hoành độ = 2 nên điểm đó có tọa độ (2;0) => x = 2; y = 0
Thay x = 2; y = 0 vào (d) ta có: 0 = (2 - m).2 + m + 1
<=> 4 - 2m + m + 1 = 0 <=> 5 - m = 0 <=> m = 5
Vậy m = 5 thì thỏa mãn
2. \(\left\{{}\begin{matrix}3x+2y=11\\x-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}4x=12\\x-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=3\\3-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)

P = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-2\sqrt{x}.\left(\sqrt{x}-1\right)+x-3}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}=\dfrac{3}{\sqrt{x}+1}\)
2. Có : \(\dfrac{1}{P}=\dfrac{4}{3}\Leftrightarrow P=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x}+1}=\dfrac{3}{4}\Leftrightarrow\sqrt{x}+1=4\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\)
Gọi giá vé máy bay thẳng là x (usd) (x >0)
Giá vé máy bay quá cảnh là ( x + 20%x )
Số tiền mua cả 2 vé khi chưa tính thuế là 2420 - 20% × 2420 = 1936 (usd)
Theo bài ta có
X + x + 20%x= 1936
(Bạn tự giải pt rồi tình giá vé quá cảnh nhé)