K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2021

TL:

ĐKXĐ: x≥−3x≥−3

Ta có phương trình : 

x3+11=3√x+3⇔x3+8=3√x+3−3x3+11=3x+3⇔x3+8=3x+3−3

⇔(x+2)(x2−2x+4)=3(√x+3−1)⇔(x+2)(x2−2x+4)=3(x+3−1)

⇔(x+2)(x2−2x+4)−3(√x+3−1)(√x+3+1)√x+3+1=0⇔(x+2)(x2−2x+4)−3(x+3−1)(x+3+1)x+3+1=0

⇔(x+2)(x2−2x+4)−(x+2)3√x+3+1=0⇔(x+2)(x2−2x+4)−(x+2)3x+3+1=0

⇔(x+2)(x2−2x+1−3√x+3+1+3)=0⇔(x+2)(x2−2x+1−3x+3+1+3)=0

^HT^

⇒\orbr{x+2=0x2−2x+1−3√x+3+1+3=0⇒\orbr{x+2=0x2−2x+1−3x+3+1+3=0

+) x+2=0⇔x=−2.x+2=0⇔x=−2.(Thỏa mãn ĐKXĐ)

+) x2−2x+1−3√x+3+1+3=0x2−2x+1−3x+3+1+3=0

⇔(x−1)2=3√x+3+1−3⇔(x−1)2=3x+3+1−3

Dễ thấy : √x+3+1≥1⇒0<3√x+3+1≤3⇒3√x+3+1−3≤0x+3+1≥1⇒0<3x+3+1≤3⇒3x+3+1−3≤0Dấu '=' xảy ra khi x=−3x=−3

                (x−1)2≥0(x−1)2≥0Dấu '=' xảy ra khi x=1.x=1.

⇒(x−1)2=3√x+3+1−3=0⇔\hept{x=−3x=1⇔x∈∅.⇒(x−1)2=3x+3+1−3=0⇔\hept{x=−3x=1⇔x∈∅.

Vậy phương trình đã cho có nghiệm duy nhất là x=−2

^HT^

28 tháng 10 2021

\(\sqrt{x+3^1}\)+ 11 + x3

= x1 + x3 + 11

\(\sqrt{x+x^1+3+1^2}\)

\(x+x^1\sqrt{x+3}\)

\(\sqrt{11+x}+3=11^3\)

= 7

p = 1 nha

mik chắc chắn luôn

28 tháng 10 2021

TL ;

p = 1

Là chính xác

HT

28 tháng 10 2021
Tự làm đi nhé nhé nhé nhé nhé nhé nhé nhé nhé
28 tháng 10 2021

lớp 5 ko bik =))

27 tháng 10 2021

Giải thích các bước giải:Giải thích các bước giải:

Xét Δ ABC có AM là trung trực ⇒ MB = MCXét Δ ABC có AM là trung trực ⇒ MB = MC

a, Xét Δ vuông AHE có ∠AEH + ∠EAH =a, Xét Δ vuông AHE có ∠AEH + ∠EAH = 90o(∠AHE=90o)90o(∠AHE=90o)

Xét Δ vuông AHF có ∠AFH + ∠FAH =Xét Δ vuông AHF có ∠AFH + ∠FAH = 90o(∠AHF=90o)90o(∠AHF=90o)

Mà ∠EAH = ∠FAH (Phân giác góc A)Mà ∠EAH = ∠FAH (Phân giác góc A)

⇒ ∠AEH = ∠AFH⇒ ∠AEH = ∠AFH

⇒ Δ AFE cân tại A⇒ Δ AFE cân tại A

b, Có Δ AFE cân tại A (câu a)b, Có Δ AFE cân tại A (câu a)

⇒AE=AF⇒AE=AF

Xét Δ vuông AHB và Δ vuông AHK có :Xét Δ vuông AHB và Δ vuông AHK có :

∠EAH = ∠FAH (Phân giác góc A), AH chung∠EAH = ∠FAH (Phân giác góc A), AH chung

⇒ Δ vuông AHB = Δ vuông AHK (cgv - gn)⇒ Δ vuông AHB = Δ vuông AHK (cgv - gn)

⇒AB=AK(cctư)⇒AB=AK(cctư)

Chứng minh tương tự ⇒ Δ vuông AHE = Δ vuông AHF (cgv - gn)Chứng minh tương tự ⇒ Δ vuông AHE = Δ vuông AHF (cgv - gn)

⇒HE=HF(cctư)⇒HE=HF(cctư)

Xét Δ BME và Δ CMF có :Xét Δ BME và Δ CMF có :

MB = MC (câu a) ,∠BME = ∠CMF (đối đỉnh), HE = HF (cmt)MB = MC (câu a) ,∠BME = ∠CMF (đối đỉnh), HE = HF (cmt)

⇒ Δ BME = Δ CMF (c - g - c)⇒ Δ BME = Δ CMF (c - g - c)

⇒BE=FC⇒BE=FC

Có AE = AF (cmt)Có AE = AF (cmt)

⇒ AB + BE = AK + KF⇒ AB + BE = AK + KF

⇒ BE = KF (AB = AK)⇒ BE = KF (AB = AK)

Mà BE = FC (cmt)Mà BE = FC (cmt)

⇒KF=FC(đpcm)⇒KF=FC(đpcm)

Chúc bạn học tốt !

26 tháng 10 2021

đề nghị bạn tô ku đa,lol ko ns bậy trên trang học tập

27 tháng 10 2021

Trả lời:

\(\sqrt{32}-\sqrt{8}+\sqrt{\frac{1}{2}}\)

\(=\sqrt{4^2.2}-\sqrt{2^2.2}+\sqrt{\frac{2}{2^2}}\)

\(=4\sqrt{2}-2\sqrt{2}+\frac{\sqrt{2}}{2}\)

\(=\left(4-2+\frac{1}{2}\right)\sqrt{2}\)

\(=\frac{5\sqrt{2}}{2}\)

Cho mk hỏi muốn rút gọn biểu thức có chứa căn bậc 4 thì làm thế nào nhỉ

Chỉ có cách là bạn phải phân tích số trong biểu thức ra làm căn bậc hai sau đó giải quyết căn 4 thành căn 2

Tùy vào đề bài sẽ có cách làm nha

HT

26 tháng 10 2021

Cảm ơn bạn nhiều! :)))

26 tháng 10 2021

TL

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

b) Xét tứ giác OMCN có:

∠(OMC) = 90o (AC ⊥ OD)

∠(ONC) = 90o (CB ⊥ OE)

∠(NCM) = 90o (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

c) Xét tam giác DOC vuông tại C, CM là đường cao có:

OM.OD = OC2 = R2

Xét tam giác EOC vuông tại C, CN là đường cao có:

ON.OE = OC2 = R2

Khi đó: OM.OD + ON.OE = 2R2

Vậy OM.OD + ON.OE không đổi

d) Ta có: N là trung điểm của BC

⇒ AN là trung tuyến của ΔABC

CO cũng là trung tuyến của ΔABC

AN ∩ CO = H

⇒ H là trọng tâm ΔABC

Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn

(O; R/3)

HT

26 tháng 10 2021

TL;

a: Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm

DC là tiếp tuyến có C là tiếp điểm

Do đó: DA=DC

Xét (O) có 

EC là tiếp tuyến có E là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EC=EB

Ta có: CD+CE=DE

nên DA+EB=DE

^YHGYK?

(ac+bd)2+(ad−bc)2=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(a2+b2)(c2+d2) 

<=> a2c2+2abcd+b2d2+a2d2+b2c2−2abcd=a2c2+a2d2+b2c2+b2d2a2c2+2abcd+b2d2+a2d2+b2c2−2abcd=a2c2+a2d2+b2c2+b2d2

<=> a2b2+a2d2+b2c2+b2d2=a2c2+a2d2+b2c2+d2b2a2b2+a2d2+b2c2+b2d2=a2c2+a2d2+b2c2+d2b2 

25 tháng 10 2021
  1. a) (ac+bd)^2+(ad−bc)^2(ac+bd)^2+(ad−bc)^2

=a^2c^2+2abcd+b^2d^2+a^2d^2−2abcd+b^2c^2

=a^2.(c^2+d2)+b^2.(c^2+d^2)

=(c^2+d^2).(a^2+b^2)

b) Ta có (ac+bd)^2≤(a^2+b^2).(c^2+d^2)

⇔a^2c^2+2abcd+b^2d^2≤a^2c^2+b^2d^2+a^2d^2+b^2c^2

⇔a^2d^2−2abcd+b^2c^2≥0

⇔(ad−bc)^2≥0( Đúng )

Dấu "=" xảy ra ⇔ad=bc