(12x^4+10x^3-x-3)÷(3x^2+x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ ba là:
51,3:3x1=17,1
Tổng của số thứ nhất và số thứ hai là 51,3-17,1=34,2
Số thứ nhất là 34,2:2=17,1
Số thứ hai là 34,2-17,1=17,1
Thời gian ô tô đi hết quãng đường là:
17h30p-15p-11h=6h15p=6,25(giờ)
Độ dài quãng đường từ TPHCM đến Phan Thiết là:
6,25x50=312,5(km)
Gọi \(A_1\) là biến cố: "quả cầu lấy ra thuộc thùng I"
\(A_2\) là biến cố: "quả cầu lấy ra thuộc thùng II"
\(A_3\) là biến cố: "quả cầu lấy ra thuộc thùng III"
\(\Rightarrow A_1;A_2;A_3\) là nhóm biến cố đầy đủ
Gọi B là biến cố: "quả cầu lấy ra là cầu trắng".
\(\Rightarrow P\left(B|A_1\right)=\dfrac{6}{10}=\dfrac{3}{5};P\left(B|A_2\right)=\dfrac{5}{11};P\left(B|A_3\right)=\dfrac{1}{4}\)
Khi lấy ngẫu nhiên 1 thùng từ 3 thùng, xác suất được chọn của 3 thùng bằng nhau: \(P\left(A_1\right)=P\left(A_2\right)=P\left(A_3\right)=\dfrac{1}{3}\)
\(\Rightarrow P\left(B\right)=P\left(B|A_1\right).P\left(A_1\right)+P\left(B|A_2\right).P\left(A_2\right)+P\left(B|A_3\right).P\left(A_3\right)\)
\(=\dfrac{3}{5}.\dfrac{1}{3}+\dfrac{5}{11}.\dfrac{1}{3}+\dfrac{1}{4}.\dfrac{1}{3}=\dfrac{287}{660}\)
a.
\(P\left(A_2|B\right)=\dfrac{P\left(A_2\right).P\left(B|A_2\right)}{P\left(B\right)}=\dfrac{100}{287}\)
b.
\(P\left(A_1|B\right)=\dfrac{P\left(A_1\right).P\left(B|A_1\right)}{P\left(B\right)}=\dfrac{132}{287}\)
Do \(P\left(A_1|B\right)>P\left(A_2|B\right)\) nên xác suất nó thuộc thùng I cao hơn
a: A là trung điểm của OM
=>\(OA=\dfrac{OM}{2}=1,5\left(cm\right)\)
B là trung điểm của ON
=>\(OB=\dfrac{ON}{2}=\dfrac{6}{2}=3\left(cm\right)\)
b: Vì OA và OB là hai tia đối nhau
nên O nằm giữa A và B
=>OA+OB=AB
=>AB=1,5+3=4,5(cm)
a: ΔDAC vuông tại D
=>\(\widehat{DAC}+\widehat{DCA}=90^0\)
=>\(\widehat{DAC}=90^0-20^0=70^0\)
b: Xét ΔADV vuông tại D và ΔATV vuông tại T có
AV chung
AD=AT
Do đó: ΔADV=ΔATV
=>\(\widehat{DAV}=\widehat{TAV}\)
=>AV là phân giác của góc DAC
c: Xét ΔATN vuông tại T và ΔADC vuông tại D có
AT=AD
\(\widehat{TAN}\) chung
Do đó: ΔATN=ΔADC
=>AN=AC
Xét ΔANC có \(\dfrac{AD}{AN}=\dfrac{AT}{AC}\)
nên DT//NC
\(\dfrac{12x^4+10x^3-x-3}{3x^2+x+1}\)
\(=\dfrac{12x^4+4x^3+4x^2+6x^3+2x^2+2x-6x^2-2x-2-x-1}{3x^2+x+1}\)
\(=\dfrac{4x^2\left(3x^2+x+1\right)+2x\left(3x^2+x+1\right)-2\left(3x^2+x+1\right)-x-1}{3x^2+x+1}\)
\(=4x^2+2x-2+\dfrac{-x-1}{3x^2+x+1}\)