Giúp mình với ạ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\div\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}\div\frac{x-4-x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}\times\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\frac{x+2\sqrt{x}+1}{\sqrt{x}}\)
\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-\sqrt{x}-1}{x-2\sqrt{x}}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-5}{x-\sqrt{x}-2}\right)\)
\(=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\right):\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}:\left(\frac{x-4-x+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)(p/s: sai thì mong bạn thông cảm nha)
a) Ta có:
\(A=\frac{\sqrt{x}-3}{x-\sqrt{x}+1}\)
\(A=\frac{\sqrt{4}-3}{4-\sqrt{4}+1}\)
\(A=\frac{2-3}{4-2+1}=-\frac{1}{3}\)
b) đk: \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(B=\left(\frac{3\sqrt{x}+6}{x-9}-\frac{2}{\sqrt{x}-3}\right):\frac{1}{\sqrt{x}+3}\)
\(B=\frac{3\sqrt{x}+6-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}+3\right)\)
\(B=\frac{3\sqrt{x}+6-2\sqrt{x}-6}{\sqrt{x}-3}\)
\(B=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(BT=\frac{2\sqrt{3}}{3+\sqrt{3}}-\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}=\frac{6+2\sqrt{3}}{3+\sqrt{3}}-\frac{1}{\sqrt{3}-2}=2-\frac{1}{\sqrt{3}-2}\)
\(=\frac{2\sqrt{3}-4-1}{\sqrt{3}-2}=\frac{2\sqrt{3}-5}{\sqrt{3}-2}=\left(5-2\sqrt{3}\right)\left(2+\sqrt{2}\right)=10+5\sqrt{2}-4\sqrt{3}+2\sqrt{6}\)
Nếu tính không lầm thì như vậy.
sao a ko trục căn thức từng phân thức cho nhanh ?
\(\frac{2}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-2}+\frac{6}{\sqrt{3}+3}\)
\(=\frac{2\left(\sqrt{3}-1\right)}{2}-\frac{\sqrt{3}+2}{-1}+\frac{6\left(\sqrt{3}-3\right)}{-6}\)
\(=\sqrt{3}-1+\sqrt{3}+2-\sqrt{3}+3=\sqrt{3}+4\)
Ta có:
\(a=\sqrt[3]{7+\sqrt{50}}=\sqrt[3]{7+5\sqrt{2}}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}=1+\sqrt{2}\)
\(b=\sqrt[3]{7-\sqrt{50}}=\sqrt[3]{7-5\sqrt{2}}=\sqrt[3]{\left(1-\sqrt{2}\right)^3}=1-\sqrt{2}\)
\(\Rightarrow M=a+b=2\) là số chẵn (đpcm)
Lại có:
\(a+b=2;a.b=\left(1+\sqrt{2}\right).\left(1-\sqrt{2}\right)=-1\)\(;a^2+b^2=\left(a+b\right)^2-2ab=6\)
\(N=a^7+b^7\)
\(=\left(a^7+a^4b^3\right)+\left(b^7+a^3b^4\right)-\left(a^4b^3+a^3b^4\right)\)
\(=a^4\left(a^3+b^3\right)+b^4\left(a^3+b^3\right)-a^3b^3\left(a+b\right)\)
\(=\left(a^3+b^3\right)\left(a^4+b^4\right)+2\)
\(=\left(a+b\right)\left(a^2+b^2-ab\right)\left[\left(a^2+b^2\right)^2-2a^2b^2\right]+2\)
\(=2\left(7.34+1\right)=478\) là số chẵn(đpcm)