Một cốc nước có dạng hình trụ đựng nước chiều cao 12cm , đường kính đáy, lượng nước trong cốc cao 8cm. Thả vào cốc nước 3 viên bi có cùng đường kính 2cm. hỏi nước dâng cao cách miệng cốc bao nhiêu cm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x^3=y^2+36\\y^3=x^2+36\end{cases}}\) trừ vế 2 PT đi ta được:
\(\left(x^3-y^3\right)=\left(y^2-x^2\right)\Leftrightarrow\left(x^3-y^3\right)+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)
Nếu \(x-y=0\Rightarrow x=y\)
\(\Leftrightarrow x^3=x^2+36\Leftrightarrow x^3-x^2-36=0\)
Đến đây dùng cardano mà giải nghiệm hoặc dùng máy tính cầm tay chứ mình cũng chịu
Ta nhận xét thấy \(x^3=y^2+36>0\) nên x>0 và tương tự y>0
Không mất tính tổng quát ta giả sử \(x\ge y>0\)
Suy ra \(x^3\ge y^3\Rightarrow y^2+36\ge x^2+36\Rightarrow x\ge y\)
Suy ra x=y
Bài 1 :
Với \(a>0;a\ne1\)
\(\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}-1\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}-1\right)^2=a-2\sqrt{a}+1\)
Bài 2 : mình nhĩ đề phải là tìm m để hệ pt có nghiệm duy nhất
Để hpt có nghiệm duy nhất khi : \(\frac{m}{2}\ne1\Leftrightarrow m\ne2\)
Với \(m\ne2\)
\(\hept{\begin{cases}x+my=1\\x+2y=3\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)y=-2\\x+2y=3\end{cases}}}\)
\(\left(1\right)\Rightarrow y=-\frac{2}{m-2}\)Thay vào (2) ta được :
\(x+2\left(-\frac{2}{m-2}\right)=3\Leftrightarrow x-\frac{4}{m-2}=3\Leftrightarrow x=3+\frac{4}{m-2}=\frac{3m-2}{m-2}\)
Vậy hpt có nghiệm duy nhất ( x ; y ) = ( \(\frac{3m-2}{m-2};-\frac{2}{m-2}\))
Thay vào biểu thức trên ta được : \(x+y=1\Rightarrow\frac{3m-2}{m-2}-\frac{2}{m-2}=1\)
\(\Leftrightarrow\frac{3m-4}{m-2}=\frac{m-2}{m-2}\Rightarrow2m=2\Leftrightarrow m=1\)
Bài 1 :
a, \(x=25\Rightarrow\sqrt{x}=5\)
Thay vào biểu thức A ta được :
\(A=\frac{25+2.5}{25-1}=\frac{35}{24}\)
b, Với \(x>0;x\ne1\)
\(B=\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+x}{x\left(\sqrt{x}+1\right)}=\frac{2+\sqrt{x}}{x+\sqrt{x}}\)vậy ko xảy ra đpcm
c, Ta có : \(\frac{A}{B}>1\Leftrightarrow\frac{\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}}{\frac{2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}}>1\Leftrightarrow\frac{x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(2+\sqrt{x}\right)}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)do \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\ge0\)
\(\left(x+1\right)^4+\left(x+1\right)^2-20=0\)
Đặt t = x + 1
\(t^4+t^2-20=0\) \(t^2\ge0\)
\(\Rightarrow\orbr{\begin{cases}t^2=4\left(n\right)\\t^2=-5\left(l\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
\(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)
\(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
Đặt \(x^2=t\left(t>0\right)\)
\(pt\Leftrightarrow t^2-2\left(m+1\right)t+4m=0\left(1\right)\)
Để pt có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\hept{\begin{cases}\Delta'=m^2+2m+1-4m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1.x_2=4m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2>0\\m>-1\\m>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m\ne1\\m>0\end{cases}}\)
giả sử \(\hept{\begin{cases}x_1^2=x_2^2=t_1\\x_3^2=x_4^2=t_2\end{cases}\Rightarrow2x_1^2}+2x_3^2=12\)
\(\Leftrightarrow2\left(t_1+t_2\right)=12\)
\(\Leftrightarrow2.2\left(m+1\right)=12\Leftrightarrow m+1=3\Leftrightarrow m=2\) (TM)
Vậy m=2 thì pt có 4 nghiệm pb
\(\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}+1}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}-1}\right)\)
\(\left(\frac{a+\sqrt{a}+\sqrt{a}+1}{\sqrt{a}+1}\right)\left(\frac{a-\sqrt{a}-\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(\left(\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}\right)\left(\frac{a-2\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}\times\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
\(\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)\)
\(a-1\)
\(\hept{\begin{cases}x+my=1\left(1\right)\\x+2y=3\left(2\right)\end{cases}}\)
Từ (1) ta có :
\(x+my=1\)
\(x=1-my\)
Từ (2) ta có :
\(x+2y=3\)
\(1-my+2y=3\)
\(2y-my=2\)
\(y\left(2-m\right)=2\)
\(y=\frac{2}{2-m}\)
Mà \(x-y=1\)
\(1-my-\frac{2}{2-m}=1\)
\(1-\frac{2m}{2-m}-\frac{2}{2-m}=1\)
\(\frac{2m}{2-m}+\frac{2}{2-m}-1=-1\)
\(\frac{2m+2}{2-m}=0\)
\(2m+2=0\)
\(m=-1\)
theo vi ét ta có S=m+1 và P=m-4
bạn nhân tung pt (x12 - mx1 + m)(x22 - mx2 + m) = 2 sẽ được
\(x1^2x2^2-mx1x2\left(x1+x2\right)+m^2x1x2-m^2\left(x1+x2\right)+m\left(x1^2+x2^2\right)+m^2\)
lưu ý \(x1^2+x2^2=\left(x1+x2\right)^2-2x1x2\)
bạn thay S=x1+x2 và P=x1x2 vào rồi giải pt ẩn m là ra
Diện tích đáy của cái cốc là: \(\pi.4^2=16\pi\left(cm^2\right)\)
Thể tích của \(3\)viên bi là: \(3.\frac{4}{3}\pi.1^3=4\pi\left(cm^3\right)\)
Mực nước cao lên số cen-ti-mét là: \(\frac{4\pi}{16\pi}=0,25\left(cm\right)\)
Nước dâng cao cách miệng cốc: \(12-8-0,25=3,75\left(cm\right)\)