Cho số nguyên tố p > 2. Tìm điều kiện cần và đủ để tổng bình phương của (p - 1) số tự nhiên liên tiếp chia hết cho tổng các số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
để phương trình đã cho bằng 0 \(\Leftrightarrow\hept{\begin{cases}a=0\\b\sqrt[3]{2}\\c\sqrt[3]{4}=0\end{cases}}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}\Rightarrow a=b=c=0\left(đpcm\right)\)
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
Cộng hai phương trình lại ta được:
\(x^2+\frac{1}{y^2}+\frac{2x}{y}+x+\frac{1}{y}=6\)
\(\Leftrightarrow\left(x+\frac{1}{y}\right)^2+\left(x+\frac{1}{y}\right)-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{y}=2\\x+\frac{1}{y}=-3\end{cases}}\)
Với \(x+\frac{1}{y}=2\Leftrightarrow\frac{1}{y}=2-x\)ta có:
\(2+x\left(2-x\right)=3\Leftrightarrow x=1\Rightarrow y=1\)
Với \(x+\frac{1}{y}=-3\Leftrightarrow\frac{1}{y}=-3-x\)ta có:
\(-3+x\left(-3-x\right)=3\left(vn\right)\)
Vậy hệ có nghiệm duy nhất \(\left(x,y\right)=\left(1,1\right)\).
Xét các số nguyên tố lớn hơn \(3\):
Khi đó các số nguyên tố là số lẻ và chia cho \(3\)dư \(1\)hoặc \(2\).
Chọn \(5\)số nguyên tố bất kì, khi đó luôn tồn tại ít nhất \(3\)số có cùng số dư khi chia cho \(3\).
Gọi \(3\)số đó là \(a,b,c\).
Khi đó \(a-b⋮3,b-c⋮3,c-a⋮3\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮3^3\).
cũng có: \(a-b⋮2,b-c⋮2,c-a⋮2\Rightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮2^3\)
Do đó ta có: \(\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮\left(2^3.3^3\right)\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)⋮216\).
Khi kể thêm \(2\)số nguyên tố \(2\)và \(3\)ta có đpcm.
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé