Câu 18. Trong mặt phẳng toạ độ Oxy, cho hai điểm A(0;3) và B(-4;0). Tính chu vi tam giác OAB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Sai
Có \(6.7.7.7=6.7^3\) số
b. Đúng
Gọi số có 4 chữ số dạng \(\overline{abcd}\) \(\Rightarrow\overline{abcd}>3000\Rightarrow a\ge3\)
Chọn a có 4 cách (từ 3,4,5,6)
Bộ bcd có \(A_6^3\) cách chọn và xếp thứ tự
\(\Rightarrow4.A_6^3=480\) số thỏa mãn
c. Sai
Gọi số có 3 chữ số là \(\overline{abc}\)
Do số chẵn nên c chẵn
TH1: \(c=0\Rightarrow\) bộ ab có \(A_6^2\) cách chọn và xếp thứ tự
TH2: \(c\ne0\Rightarrow c\) có 3 cách chọn (từ 2,4,6)
a có 5 cách chọn (khác 0 và c), b có 5 cách chọn (khác a và c)
\(\Rightarrow A_6^2+3.5.5=105\) số
a. Số các số như vậy chỉ có \(6.7^3\) do chữ số đầu tiên phải khác 0 -> Sai
b. Gọi số có 4 chữ số thỏa mãn trên là \(\overline{abcd}\) với \(a\ge3\) và a, b, c, d phân biệt. Khi đó số các số như vậy là \(4.6.5.4=480\) -> Đúng.
c. Gọi số thỏa mãn là \(\overline{abc}\) với a, b, c phân biệt và c chẵn. Khi đó \(c\in\left\{0,2,4,6\right\}\)
Xét \(c=0\) thì có \(6.5=30\) số
Xét \(c\in\left\{2,4,6\right\}\) thì có \(3.5.5=75\) số
Vậy có tất cả \(30+75=105\) số thỏa mãn -> Sai.
Gọi H là giao điểm của BA và CK
Xét ΔBHC có
BK,CA là các đường cao
BK cắt CA tại D
Do đó: D là trực tâm của ΔBHC
=>HD\(\perp\)BC tại M
Xét ΔBMD vuông tại M và ΔBKC vuông tại K có
\(\widehat{MBD}\) chung
Do đó: ΔBMD~ΔBKC
=>\(\dfrac{BM}{BK}=\dfrac{BD}{BC}\)
=>\(BD\cdot BK=BM\cdot BC\)
Xét ΔCMD vuông tại M và ΔCAB vuông tại A có
\(\widehat{MCD}\) chung
Do đó: ΔCMD~ΔCAB
=>\(\dfrac{CM}{CA}=\dfrac{CD}{CB}\)
=>\(CA\cdot CD=CM\cdot CB\)
\(BD\cdot BK+CD\cdot CA\)
\(=BM\cdot BC+CM\cdot BC=BC^2=4\cdot CQ^2\)
chiều rộng bằng 2/3 chiều dài chiều rộng lại nhiều hơn chiều dài 1,2m là sao?
Từ giả thiết: \(3=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\Rightarrow abc\ge1\)
Lại có:
\(a^2b^2+b^2c^2+c^2a^2\ge3\sqrt[3]{a^2b^2.b^2c^2.c^2a^2}=3\sqrt[3]{\left(abc\right)^4}\ge3\sqrt[3]{1^4}=3\)
\(\Rightarrow6\le2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Áp dụng BĐT Bunhiacopxki:
\(\left(a^4+b^4+1\right)\left(1+1+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^4+b^4+1}\le\dfrac{c^4+2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự: \(\dfrac{1}{b^4+c^4+1}\le\dfrac{a^4+2}{\left(a^2+b^2+c^2\right)^2}\)
\(\dfrac{1}{c^4+a^4+1}\le\dfrac{b^4+2}{\left(a^2+b^2+c^2\right)^2}\)
Cộng vế: \(\Rightarrow P\le\dfrac{a^4+b^4+c^4+6}{\left(a^2+b^2+c^2\right)^2}\le\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+b^2+c^2\right)^2}=1\)
\(P_{max}=1\) khi \(a=b=c=1\)
Minh mua 50 sữa tắm đang giảm 30% giá còn lại 749000Đ hỏi giá ban đầu là bao nhiêu giúp em với mn ơi
Giá ban đầu của 50 chai sữa tắm là:
\(749000:\left(100\%-30\%\right)=1070000\) (đồng)
bài giải
1 một chai sữa tắm sau khi giảm giá là:
749000 : 50 = 14980 ( đồng )
giá ban đầu của mỗi chai là:
14980 : ( 100 - 30 ) x100 = 21400 ( đồng )
đáp số: 21400 đồng.
Diện tích đáy của 1 hộp quà là:
\(400:\dfrac{1}{3}:12=100\left(cm^2\right)\)
Độ dài cạnh đáy của hộp quà là:
\(\sqrt{100}=10\left(cm\right)\)
Diện tích giấy mà bạn An cần để làm 10 hộp quà đó là:
\(10\cdot\left[\dfrac{1}{2}\cdot\left(10\cdot4\right)\cdot13\right]=2600\left(cm^2\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}=\\ A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{99.99}+\dfrac{1}{100.100}\\ A< \dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ A< \dfrac{1}{2.2}+\dfrac{49}{50}\\ A< \dfrac{1}{4}+\dfrac{49}{50}\\ A< \dfrac{37}{50}=\dfrac{74}{100}< \dfrac{75}{100}=\dfrac{3}{4}\) Hay \(A< \dfrac{3}{4}\)
Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{3}{4}\)
a) Số học sinh loại giỏi:
120 . 1/6 = 20 (học sinh)
Số học sinh khá:
120 . 30% = 36 (học sinh)
Số học sinh trung bình:
120 . 1/3 = 40 (học sinh)
Số học sinh yếu:
120 - 20 - 36 - 40 = 24 (học sinh)
b) Tỉ số phần trăm của số học sinh yếu so với cả lớp:
24 . 100% : 120 = 20%
Chiều dài mảnh đất:
13,7 × 4 = 54,8 (m)
Diện tích mảnh đất:
54,8 × 13,7 = 750,76 (m²)
Diện tích trang trại:
71,769 × 4 = 287,076 (m²)
Diện tích còn thừa:
750,76 - 71,769 - 287,076 = 391,915 (m²)
Đây ạ !
Chiều dài của mảnh đất hình chữ nhật là:
13,7 x 4= 54,8 (m)
Diện Tích của mảnh đất đó là :
54,8 × 13,7 = 750,76 (m²)
Diện tích của trang trại đó là:
71,769 × 4 = 287,076 (m²)
Diện tích mảnh đất còn thừa là :
750,76 - 71,769 - 287,076 = 391,915 (m²)
Đáp số : 391,915 m²
∆OAB vuông tại O
⇒ AB² = OA² + OB² (Pythagore)
= 3² + 4²
= 25
⇒ AB = 5
⇒ Chu vi ∆OAB:
OA + OB + AB = 3 + 4 + 5 = 12