K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2024

loading... 

∆OAB vuông tại O

⇒ AB² = OA² + OB² (Pythagore)

= 3² + 4²

= 25

⇒ AB = 5

⇒ Chu vi ∆OAB:

OA + OB + AB = 3 + 4 + 5 = 12

NV
7 tháng 5 2024

a. Sai

Có \(6.7.7.7=6.7^3\) số 

b. Đúng

Gọi số có 4 chữ số dạng \(\overline{abcd}\) \(\Rightarrow\overline{abcd}>3000\Rightarrow a\ge3\)

Chọn a có 4 cách (từ 3,4,5,6)

Bộ bcd có \(A_6^3\) cách chọn và xếp thứ tự

\(\Rightarrow4.A_6^3=480\) số thỏa mãn

c. Sai

Gọi số có 3 chữ số là \(\overline{abc}\)

Do số chẵn nên c chẵn

TH1: \(c=0\Rightarrow\) bộ ab có \(A_6^2\) cách chọn và xếp thứ tự

TH2: \(c\ne0\Rightarrow c\) có 3 cách chọn (từ 2,4,6)

a có 5 cách chọn (khác 0 và c), b có 5 cách chọn (khác a và c)

\(\Rightarrow A_6^2+3.5.5=105\) số

7 tháng 5 2024

a. Số các số như vậy chỉ có \(6.7^3\) do chữ số đầu tiên phải khác 0 -> Sai

b. Gọi số có 4 chữ số thỏa mãn trên là \(\overline{abcd}\) với \(a\ge3\) và a, b, c, d phân biệt. Khi đó số các số như vậy là \(4.6.5.4=480\) -> Đúng.

c. Gọi số thỏa mãn là \(\overline{abc}\) với a, b, c phân biệt và c chẵn. Khi đó \(c\in\left\{0,2,4,6\right\}\) 

 Xét \(c=0\) thì có \(6.5=30\) số

 Xét \(c\in\left\{2,4,6\right\}\) thì có \(3.5.5=75\) số

Vậy có tất cả \(30+75=105\) số thỏa mãn -> Sai.

Gọi H là giao điểm của BA và CK

Xét ΔBHC có

BK,CA là các đường cao

BK cắt CA tại D

Do đó: D là trực tâm của ΔBHC

=>HD\(\perp\)BC tại M

Xét ΔBMD vuông tại M và ΔBKC vuông tại K có

\(\widehat{MBD}\) chung

Do đó: ΔBMD~ΔBKC

=>\(\dfrac{BM}{BK}=\dfrac{BD}{BC}\)

=>\(BD\cdot BK=BM\cdot BC\)

Xét ΔCMD vuông tại M và ΔCAB vuông tại A có

\(\widehat{MCD}\) chung

Do đó: ΔCMD~ΔCAB

=>\(\dfrac{CM}{CA}=\dfrac{CD}{CB}\)

=>\(CA\cdot CD=CM\cdot CB\)

\(BD\cdot BK+CD\cdot CA\)

\(=BM\cdot BC+CM\cdot BC=BC^2=4\cdot CQ^2\)

7 tháng 5 2024

chiều rộng bằng 2/3 chiều dài chiều rộng lại nhiều hơn chiều dài 1,2m là sao?

7 tháng 5 2024

chiều rộng hơn chiều dài????????

NV
7 tháng 5 2024

Từ giả thiết: \(3=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\Rightarrow abc\ge1\)

Lại có:

\(a^2b^2+b^2c^2+c^2a^2\ge3\sqrt[3]{a^2b^2.b^2c^2.c^2a^2}=3\sqrt[3]{\left(abc\right)^4}\ge3\sqrt[3]{1^4}=3\)

\(\Rightarrow6\le2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

Áp dụng BĐT Bunhiacopxki:

\(\left(a^4+b^4+1\right)\left(1+1+c^4\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^4+b^4+1}\le\dfrac{c^4+2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự: \(\dfrac{1}{b^4+c^4+1}\le\dfrac{a^4+2}{\left(a^2+b^2+c^2\right)^2}\)

\(\dfrac{1}{c^4+a^4+1}\le\dfrac{b^4+2}{\left(a^2+b^2+c^2\right)^2}\)

Cộng vế: \(\Rightarrow P\le\dfrac{a^4+b^4+c^4+6}{\left(a^2+b^2+c^2\right)^2}\le\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+b^2+c^2\right)^2}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)

7 tháng 5 2024

Giá ban đầu của 50 chai sữa tắm là:

\(749000:\left(100\%-30\%\right)=1070000\) (đồng)

7 tháng 5 2024

bài giải

1 một chai sữa tắm sau khi giảm giá là:

749000 : 50 = 14980 ( đồng )

giá ban đầu của mỗi chai là:

14980 : ( 100 - 30 ) x100 = 21400 ( đồng )

đáp số: 21400 đồng.

7 tháng 5 2024

Diện tích đáy của 1 hộp quà là:

\(400:\dfrac{1}{3}:12=100\left(cm^2\right)\)

Độ dài cạnh đáy của hộp quà là:

\(\sqrt{100}=10\left(cm\right)\)

Diện tích giấy mà bạn An cần để làm 10 hộp quà đó là:

\(10\cdot\left[\dfrac{1}{2}\cdot\left(10\cdot4\right)\cdot13\right]=2600\left(cm^2\right)\)

7 tháng 5 2024

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}=\\ A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{99.99}+\dfrac{1}{100.100}\\ A< \dfrac{1}{2.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ A< \dfrac{1}{2.2}+\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ A< \dfrac{1}{2.2}+\dfrac{49}{50}\\ A< \dfrac{1}{4}+\dfrac{49}{50}\\ A< \dfrac{37}{50}=\dfrac{74}{100}< \dfrac{75}{100}=\dfrac{3}{4}\) Hay \(A< \dfrac{3}{4}\)

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{3}{4}\)

7 tháng 5 2024

a) Số học sinh loại giỏi:

120 . 1/6 = 20 (học sinh)

Số học sinh khá:

120 . 30% = 36 (học sinh)

Số học sinh trung bình:

120 . 1/3 = 40 (học sinh)

Số học sinh yếu:

120 - 20 - 36 - 40 = 24 (học sinh)

b) Tỉ số phần trăm của số học sinh yếu so với cả lớp:

24 . 100% : 120 = 20%

7 tháng 5 2024

Chiều dài mảnh đất:

13,7 × 4 = 54,8 (m)

Diện tích mảnh đất:

54,8 × 13,7 = 750,76 (m²)

Diện tích trang trại:

71,769 × 4 = 287,076 (m²)

Diện tích còn thừa:

750,76 - 71,769 - 287,076 = 391,915 (m²)

7 tháng 5 2024

Đây ạ !

Chiều dài của mảnh đất hình chữ nhật là:

13,7 x 4= 54,8 (m)

Diện Tích của mảnh đất đó là :

54,8 × 13,7 = 750,76 (m²)

Diện tích của trang trại đó là:

71,769 × 4 = 287,076 (m²)

Diện tích mảnh đất còn thừa là :

750,76 - 71,769 - 287,076 = 391,915 (m²)

Đáp số : 391,915 m²