Bài 1: Phân tích đa thức thành nhân tử:
\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
Bài 2: Tính \(x^7+\frac{1}{x^7}\)biết x thỏa mãn \(x^2+3x+1=0\)
Tui có giải ra \(x=\frac{\pm\sqrt{5}-3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(x\ge0;x\ne1\)
\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}\pm1\right)}\right)\)
\(=\left(\frac{x+\sqrt{x}+1+x-\sqrt{x}+1}{\sqrt{x}}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)\)
\(=\frac{2\left(x+1\right)}{\sqrt{x}}.\frac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}=\frac{\left(x+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
Bài 4: (3,0đ) Cho đường tròn (O; R), lấy điểm M nằm ngoài đường tròn (O; R) sao cho qua M kẻ được hai tiếp tuyến MA, MB của (O; R) và góc AMB nhọn ( với A,B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt đường tròn (O; R) tại N ( khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K ( khác A).1. Chứng minh: tứ giác NHBI nội tiếp.2. Chứng minh: tam giác NHI đồng dạng với tam giác NIK.3. Gọi C là giao điểm của NB và HI, D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.
\(\frac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}-1\) có ngoặc lớn không bạn?
Ta có:
\(0< a,b< 1\)nên \(a^3< a^2< a< 1,b^3< b^2< b< 1\)
\(\left(1-a^2\right)\left(1-b\right)>0\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\)
Tương tự ta cũng có: \(b^3+c^3< 1+b^2c,c^3+a^3< 1+c^2a\)
Cộng vế với vế lại ta có đpcm.
\(x^2-6x+2m-3=0\)
\(\Delta=b^2-4ac=36-4\left(2m-3\right)=36-8m+12=48-8m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)\(< =>48-8m>0< =>48>8m< =>6>m\)
Theo Vi-ét ta có :\(\hept{\begin{cases}x_1x_2=\frac{c}{a}=2m-3\\x_1+x_2=\frac{-b}{a}=6\end{cases}}\)là
\(x_1\)là nghiệm phương trình \(x_1^2-6x_1+2m-3=0\)
\(=>x_1^2=3-2m+6x_1\)
\(x_2\)là nghiệm phương trình \(x_2^2-6x_2+2m-3=0\)
\(=>x_2^2=3-2m+6x_2\)
Mà \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\left(3-2m+6x_1-5x_1+2m-4\right)\left(3-2m+6x_2-5x_2+2m-4\right)=2\)
\(\left(3+x_1-4\right)\left(3+x_2-4\right)=2\)
\(\left(x_1-1\right)\left(x_2-1\right)=2\)
\(x_1x_2-x_1-x_2+1=2\)
\(x_1x_2-\left(x_1+x_2\right)=1\)
\(2m-3-6=1\)
\(2m-9=1\)
\(m=5\)
Vậy m=5
Tính giá trị biểu thức
a, \(\sqrt{2+\sqrt[]{3}}\)
b, \(\sqrt{9+4\sqrt{5}}\)
c, \(\sqrt{7+\sqrt[]{24}}\)
a, Đặt A = \(\sqrt{2+\sqrt{3}}\)
\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Rightarrow A=\frac{\sqrt{3}+1}{\sqrt{2}}=\frac{\sqrt{6}+\sqrt{2}}{2}\)
b, \(\sqrt{9+4\sqrt{5}}=\sqrt{5+4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)
c, \(\sqrt{7+\sqrt{24}}=\sqrt{7+2\sqrt{6}}=\sqrt{6+2\sqrt{6}+1}=\sqrt{\left(\sqrt{6}+1\right)^2}=\sqrt{6}+1\)
Bài 1:
\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)
\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)
\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)
Bài 2:
\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm)
Ta có:
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)
\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)
\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)