xác định hệ số a và b sao cho :x^3+ax+b chia hết cho x^2+4x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+2+3+...+n\)
Số lượng số hạng là: `(n-1):1+1=n` (số hạng)
Tổng của dãy số là: `(n+1)*n/2`
Áp dụng ta có:
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+....+\dfrac{1}{1+2+3+...+100}\\ =\dfrac{1}{\dfrac{3\cdot\left(3+1\right)}{2}}+\dfrac{1}{\dfrac{4\cdot\left(4+1\right)}{2}}+...+\dfrac{1}{\dfrac{100\cdot\left(100+1\right)}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{100\cdot101}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\\ =2\cdot\dfrac{98}{303}\\ =\dfrac{196}{303}\)
a: Ta có: \(\widehat{bMB}=\widehat{NMC}\)(hai góc đối đỉnh)
mà \(\widehat{bMB}=50^0\)
nên \(\widehat{NMC}=50^0\)
Ta có: \(\widehat{MNC}+\widehat{aNC}=180^0\)(hai góc kề bù)
=>\(\widehat{MNC}+110^0=180^0\)
=>\(\widehat{MNC}=70^0\)
Xét ΔMNC có \(\widehat{NMC}+\widehat{MNC}+\widehat{C}=180^0\)
=>\(\widehat{C}+50^0+70^0=180^0\)
=>\(\widehat{C}=60^0\)
b: Ta có: \(\widehat{NMB}+\widehat{NMC}=180^0\)(hai góc kề bù)
=>\(\widehat{NMB}+50^0=180^0\)
=>\(\widehat{NMB}=130^0\)
Ta có: MN//AB
=>\(\widehat{CMN}=\widehat{CBA}\)(hai góc đồng vị)
=>\(\widehat{CBA}=50^0\)
BN là phân giác của góc CBA
=>\(\widehat{NBM}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔNMB có \(\widehat{NMB}+\widehat{BNM}+\widehat{NBM}=180^0\)
=>\(\widehat{MNB}=180^0-130^0-25^0=25^0\)
c: BN là phân giác của góc CBA
=>\(\widehat{ABN}=\dfrac{\widehat{ABC}}{2}=25^0\)
Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(\widehat{BAN}+60^0+50^0=180^0\)
=>\(\widehat{BAN}=70^0\)
Xét ΔBAN có \(\widehat{BAN}+\widehat{ABN}+\widehat{ANB}=180^0\)
=>\(\widehat{ANB}=180^0-75^0-25^0=85^0\)
Bài 1:
a: \(\dfrac{a}{b}>1\)
=>\(\dfrac{a}{b}-1>0\)
=>\(\dfrac{a-b}{b}>0\)
mà b>0
nên a-b>0
=>a>b
b: a>b
=>\(\dfrac{a}{b}>\dfrac{b}{b}\)
=>\(\dfrac{a}{b}>1\)
c: a/b<1
=>\(\dfrac{a}{b}-1< 0\)
=>\(\dfrac{a-b}{b}< 0\)
mà b>0
nên a-b<0
=>a<b
d: a<b
=>\(\dfrac{a}{b}< \dfrac{b}{b}\)
=>\(\dfrac{a}{b}< 1\)
|x|+|y|<=3
mà x,y nguyên
nên \(\left(\left|x\right|;\left|y\right|\right)\in\left\{\left(0;3\right);\left(0;1\right);\left(0;2\right);\left(0;0\right);\left(1;1\right);\left(1;2\right);\left(3;0\right);\left(1;0\right);\left(2;0\right);\left(2;1\right)\right\}\)
=>(x;y)\(\in\){(0;0);(0;1);(1;0);(0;-1);(-1;0);(0;2);(2;0);(0;-2);(-2;0);(0;3);(0;-3);(3;0);(-3;0);(1;1);(1;-1);(-1;1);(1;2);(2;1);(-1;-2);(-2;-1);(1;-2);(-2;1);(-1;2);(2;-1)}
Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\widehat{BAC}\)
=>\(\widehat{IBC}+\widehat{ICB}=90^0-\dfrac{1}{2}\cdot\widehat{BAC}\)
Xét ΔBIC có \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)
=>\(\widehat{BIC}+90^0-\dfrac{1}{2}\widehat{BAC}=180^0\)
=>\(\widehat{BIC}=180^0-90^0+\dfrac{1}{2}\cdot\widehat{BAC}=90^0+\dfrac{1}{2}\cdot\widehat{BAC}\)
\(-\dfrac{2}{5}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\\ =\left(\dfrac{-2}{5}+\dfrac{-2}{5}\right)+\left(\dfrac{3}{4}+\dfrac{1}{6}\right)\\ =\dfrac{-4}{5}+\left(\dfrac{9}{12}+\dfrac{2}{12}\right)\\ =\dfrac{-4}{5}+\dfrac{11}{12}\\ =\dfrac{-48}{60}+\dfrac{55}{60}\\ =\dfrac{55-48}{60}\\ =\dfrac{7}{60}\)
\(x^3+ax+b\\ =\left(x^3+4x^2+3x\right)+\left(-4x^2-16x-12\right)+\left(a+13\right)x+\left(b+12\right)\\ =x\left(x^2+4x+3\right)-4\left(x^2+4x+3\right)+\left(a+13\right)x+\left(b+12\right)\\ =\left(x-4\right)\left(x^2+4x+3\right)+\left(a+13\right)x+\left(b+12\right)\)
Để `x^3+ax+b` chia hết cho `x^2+4x+3` thì:
\(\left\{{}\begin{matrix}a+13=0\\b+12=0\end{matrix}\right.=>\left\{{}\begin{matrix}a=-13\\b=-12\end{matrix}\right.\)