Giúp em với ạ:
Chứng minh giá trị biẻu thức S= xyz(x-y)(y-z)(z-x) luôn chia hết cho 12 với mọi số nguyên x,y,z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A nguyên khi (12n + 17) ⋮ (3n + 1)
Ta có:
12n + 17 = 12n + 4 + 13
= 4(3n + 1) + 13
Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)
⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ 3n ∈ {-14; -2, 0; 12}
⇒ n ∈ {-14/3; -2/3; 0; 4}
Mà n là số nguyên
⇒ n ∈ {0; 4}
b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)
Ta có:
10n + 9 = 10n - 2 + 11
= 2(5n - 1) + 11
Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)
⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}
⇒ 5n ∈ {-10; 0; 2; 12}
⇒ n ∈ {-2; 0; 2/5; 12/5}
Mà n là số nguyên
⇒ n ∈ {-2; 0}
a,Kéo dài OY cắt O'X' tại A ta có:
\(\widehat{XOY}\) = \(\widehat{XOA}\) = \(\widehat{OAO'}\) (so le trong) (1)
\(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)
Kết hợp (1) Và (2) ta có:
\(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)
b, Kéo dài OY cắt O'Z' tại H
\(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')
Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)
\(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)
⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)
⇒ OZ // O'Z' (đpcm)
a) Xét ∆ABD và ∆EBD có:
AB = BE (gt)
∠ABD = ∠EBD (BD là tia phân giác của ABC)
BD là cạnh chung
⇒ ∆ABD = ∆EBD (c-g-c)
b) Do ∆ABD = ∆EBD (cmt)
⇒ AD = ED (hai cạnh tương ứng)
Lại do ∆ABD = ∆EBD (cmt)
⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)
⇒ ∠DAF = ∠DEC = 90⁰
Xét hai tam giác vuông: ∆DAF và ∆DEC có:
AD = ED (cmt)
∠ADF = ∠EDC (đối đỉnh)
⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = EC (hai cạnh tương ứng)
c) ∆BAE có:
AB = BE (gt)
⇒ ∆BAE cân tại B
⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2 (1)
Do AF = EC (cmt)
AB = BE (gt)
⇒ AF + AB = EC + BE
⇒ BF = BC
⇒ ∆BFC cân tại B
⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2 (2)
Từ (1) và (2) suy ra:
∠BEA = ∠BCF
Mà ∠BEA và ∠BCF là hai góc đồng vị
⇒ AE // CF
\(\left(-5\right)^{18}:5^{x-3}=25^6\)
\(=>5^{x-3}=\left(-5\right)^{18}:25^6\)
\(=>5^{x-3}=5^{18}:5^{12}\)
\(=>5^{x-3}=5^6\)
\(=>x-3=6\)
\(=>x=6+3\)
\(=>x=9\)
a, Xét ΔABC có AB=AC
=> ΔABC là tam giác cân
=> Góc B = góc C (t/c)
b, Xét ΔABC có: góc A + góc B + góc C = 180 độ ( tổng 3 góc trong 1 tam giác)
=> 180 - góc A = góc B + góc C (1)
mà ΔABC là tam giác cân => góc B = góc C (2)
Xét ΔAED có AE=AD => ΔAED là tam giác cân
=> góc E = góc D (3)
Chứng minh tương tự ta có 180 độ - góc A = góc AED + góc ADE (4)
Từ (1),(2),(3),(4) => góc ADE = góc B
Độ cao của du khách so với mực nước biển:
-3,5 -3,5 . 2/3 - 1,5 = -22/3 (m)
|2x - 3| = 4³ : 4
|2x - 3| = 4²
|2x - 3| = 16
*) Với x 3/2, ta có:
2x - 3 = 16
2x = 16 + 3
2x = 19
x = 19/2 (nhận)
*) Với x < 3/2, ta có
2x - 3 = -16
2x = -16 + 3
2x = -13
x = -13/2 (nhận)
Vậy x = -13/2; x = 19/2
Giả sử x;y;z đều chẵn
\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)
Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn
\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)
\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)
Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ
=> xyz chẵn và \(xyz=2a\)
=> (y-z) chẵn và \(y-z=2b\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)
\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)
Nếu 1 trong 3 số x; y; z chia hết cho 3
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)
Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư
=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)
Mà 3 và 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)