Cho ba số dương x,y,z chứng minh đê
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đáp án: D
Phương trình vô nghiệm khi: \(\Delta'< 0\)
Ta có: \(\Delta'=\left(1-m\right)^2+4m=\left(m+1\right)^2\ge0\forall m\)
Nên phương trình luôn có nghiệm với mọi m

cần ôn thi cực lực bỏ ghêm bỏ phim chỉ co bài tập trong đầu ko đi chơi, ko giải trí

à mình biết rồi -.- hơm đố nữa, nhầm công thức delta thảo nào thấy sai sai á
TH2 : ...
\(x_1=\frac{m-1-\left|m+3\right|}{4}=\frac{2}{4}=\frac{1}{2}\)( loại )
\(x_2=\frac{m-1+\left|m+3\right|}{4}=\frac{2m+2}{4}=\frac{m+1}{2}\)( chọn )
Vậy chọn B
/\ = (m-1)2 -4 x 2 x (-m-1)
= m2 -2m +1 -8 x (-m-1)
= m2 -2m +1 +8m +8
= m2 +6m +9
= (m - 3)2
đến đây thì chịu

Ta có:\(P=\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}=\left(\frac{x+y}{4\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\right)+\frac{3\left(x+y\right)}{4\sqrt{xy}}\ge2\sqrt{\frac{x+y}{4\sqrt{xy}}.\frac{\sqrt{xy}}{x+y}}+\frac{3.2\sqrt{xy}}{4\sqrt{xy}}\)
\(=1+\frac{3}{2}=\frac{5}{2}\)
Dấu '=' xảy ra khi và chỉ khi x=y
Vậy P đạt GTNN của P là 5/2 khi x=y
-.-

Ta có:\(a+b+c=0\Rightarrow\frac{a+b+c}{abc}=0\)(Do abc khác 0)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
Khi đó ta có:\(\Rightarrow VT=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|=VP\left(ĐPCM\right)\)
-.-

a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)
\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)

a, \(A=\sqrt{x-6\sqrt{x}+9}-\sqrt{4x+4\sqrt{x}+1}\)
\(=\sqrt{\left(\sqrt{x}-3\right)^2}-\sqrt{\left(2\sqrt{x}+1\right)^2}\)
\(=\left|\sqrt{x}-3\right|-\left|2\sqrt{x}+1\right|=\left|\sqrt{x}-3\right|-2\sqrt{x}-1\)
b, \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(B^2=x+2\sqrt{x-1}+x-2\sqrt{x-1}-2\sqrt{x^2-4\left(x-1\right)}\)
\(=2x-2\sqrt{\left(x+2\right)^2}=2x-2\left|x+2\right|\)
\(\Rightarrow B=\sqrt{2x-2\left|x+2\right|}\)