\(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=7x+9\\x\left(y-x+1\right)=3\end{matrix}\right.\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LT
0
HA
2
30 tháng 5 2023
√4−√7−√4+√7+√7=√2(√4−√7−√4+√7+√7)√2=√8−2√7−√8+2√7+√14√2=√7−2√7+1−√7+2√7+1+√14√2=√(√7−1)2−√(√7+1)2+√14√2=∣∣√7−1∣∣−∣∣√7+1∣∣+√14√2=√7−1−√7−1+√14√2=√14−2√2=√2(√7−√2)√2=√7−√2
AH
Akai Haruma
Giáo viên
30 tháng 5 2023
Lời giải:
\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=\sqrt{\frac{8-2\sqrt{7}}{2}}-\sqrt{\frac{8+2\sqrt{7}}{2}}=\sqrt{\frac{(\sqrt{7}-1)^2}{2}}-\sqrt{\frac{(\sqrt{7}+1)^2}{2}}\)
\(=\frac{|\sqrt{7}-1|}{\sqrt{2}}-\frac{|\sqrt{7}+1|}{\sqrt{2}}=\frac{\sqrt{7}-1-(\sqrt{7}+1)}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
ĐK : \(x\ne0\)
Ta có \(x^4+2x^3y+x^2.y^2=7x+9\)
\(\Leftrightarrow x^2.\left(x+y\right)^2=7x+9\)
\(\Rightarrow x\left(x+y\right)=\sqrt{7x+9}\left(x\ge-\dfrac{9}{7}\right)\)(1)
Lại có \(x.\left(y-x+1\right)=3\Leftrightarrow x.\left(x+y\right)=2x^2-x+3\) (2)
Thay (2) vào (1) ta được \(2x^2-x+3=\sqrt{7x+9}\)
\(\Leftrightarrow2x^2-x-1=\sqrt{7x+9}-4\)
\(\Leftrightarrow\left(x-1\right).\left(2x+1\right)=\dfrac{7.\left(x-1\right)}{\sqrt{7x+9}+4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2x+1=\dfrac{7}{\sqrt{7x+9}+4}\end{matrix}\right.\)
Với \(2x+1=\dfrac{7}{\sqrt{7x+9}+4}\) (*)
\(\Leftrightarrow2x=\dfrac{3-\sqrt{7x+9}}{\sqrt{7x+9}+4}\)
\(\Leftrightarrow2x+\dfrac{7x}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\2+\dfrac{7}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\left(3\right)\end{matrix}\right.\)
Dễ thấy (3) vô nghiệm nên phương trình (*) vô nghiệm
Với x = 1 => y = 3
Tập nghiệm (x;y) = (1;3)