a) \(\dfrac{x}{7}\) = \(\dfrac{9}{y}\) và x > y
b) \(\dfrac{x}{15}\) = \(\dfrac{3}{y}\) và x < y <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3.17
a = \(\dfrac{n+8}{2n-5}\) (n \(\in\) N*)
a \(\in\) Z ⇔ n + 8 ⋮ 2n - 5
2.(n + 8) ⋮ 2n - 5
2n + 16 ⋮ 2n - 5
2n - 5 + 21 ⋮ 2n - 5
21 ⋮ 2n - 5
2n - 5 \(\in\) Ư(21)
21 = 3.7; Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
Lập bảng ta có:
2n - 5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -8 (loại) | -1(loại) | -1(loại) | -2(loại) | 3 | 4 | 6 | 13 |
a =\(\dfrac{n+8}{2n-5}\) | 11(loại) | 4(loại) | 2 | 1(loại) |
Theo bảng trên ta có: n = 6
Vậy n = 6 thì a là số nguyên tố.
\(\dfrac{7n-1}{4}\) \(\in\) N ; \(\dfrac{5n+3}{12}\) \(\in\) N
⇔ \(\left\{{}\begin{matrix}7n-1⋮4\\5n+3⋮12\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3.\left(7n-1\right)⋮12\\5n+3⋮12\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}21n-3⋮12\\5n+3⋮12\end{matrix}\right.\)
⇒ 21n - 3 + 5n + 3 ⋮ 12
(21n + 5n) ⋮ 12
26n ⋮ 12
13n ⋮ 6
n ⋮ 6
⇒ 7n là số chẵn ⇒ 7n - 1 là số lẻ nên 7n - 1 không chia hết cho 4
Vậy không tồn tại số tự nhiên n nào thỏa mãn đề bài.
\(S=\dfrac{1}{1!}+\dfrac{1}{2!}+....+\dfrac{1}{2001!}\)
\(S=1+\dfrac{1}{2!}+\dfrac{1}{3!}+.....+\dfrac{1}{2001!}\)
\(\dfrac{1}{2!}=\dfrac{1}{1\times2};\dfrac{1}{3!}< \dfrac{1}{2\times3};...;\dfrac{1}{2001!}< \dfrac{1}{2000\times2001}\)
\(\dfrac{1}{2!}+\dfrac{1}{3!}+....+\dfrac{1}{2001!}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{2000\times2001}\)
\(S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2000}-\dfrac{1}{2001}\)
\(S< 2-\dfrac{1}{2001}< 2< 3\)
=> \(S< 3\)
A = \(\dfrac{2023^{2024^{2025}}-2017^{2024^{2023}}}{10}\)
A = \(\dfrac{2023^{2^{2025}.1012^{2025}}-2017^{2^{2023}.1012^{2023}}}{10}\)
A = \(\dfrac{2023^{2^2.2^{2023}.1012^{2025}}-2017^{2^2.2^{2021}1012^{2023}.}}{10}\)
A = \(\dfrac{2023^{4.2^{2023}.1012^{2025}}-2017^{4.2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(2023^4\right)^{2^{2023}.1012^{2025}}-\left(2017^4\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(\overline{..1}\right)^{2^{2023}.1012^{2025}}-\left(\overline{..1}\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\overline{..1}-\overline{..1}}{10}\)
A = \(\dfrac{\overline{..0}}{10}\)
A \(\in\) N (đpcm)
A = \(\dfrac{2023^{2024^{2025}}-2017^{2024^{2023}}}{10}\)
A = \(\dfrac{2023^{2^{2025}.1012^{2025}}-2017^{2^{2023}.1012^{2023}}}{10}\)
A = \(\dfrac{2023^{2^2.2^{2023}.1012^{2025}}-2017^{2^2.2^{2021}1012^{2023}.}}{10}\)
A = \(\dfrac{2023^{4.2^{2023}.1012^{2025}}-2017^{4.2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(2023^4\right)^{2^{2023}.1012^{2025}}-\left(2017^4\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\left(\overline{..1}\right)^{2^{2023}.1012^{2025}}-\left(\overline{..1}\right)^{2^{2021}.1012^{2023}}}{10}\)
A = \(\dfrac{\overline{..1}-\overline{..1}}{10}\)
A = \(\dfrac{\overline{..0}}{10}\)
A \(\in\) N (đpcm)
\(5x+xy-4y=3\)
\(\Rightarrow x\left(y+5\right)-4y-20=3-20\)
\(\Rightarrow x\left(y+5\right)-4\left(y+5\right)=-17\)
\(\Rightarrow\left(y+5\right)\left(x-4\right)=-17\)
Bổ sung: \(x,y\in Z\)
Ta có bảng:
y + 5 | -1 | 1 | 17 | -17 |
x - 4 | 17 | -17 | -1 | 1 |
y | -6 | -4 | 12 | -22 |
x | 21 | -13 | 3 | 5 |
Vậy: ...
\(5x+xy-4y=3\)
\(\Rightarrow x\cdot\left(y+5\right)-4y-20=3-20\)
\(\Rightarrow x\cdot\left(y+5\right)-4\cdot\left(y+5\right)=-17\)
\(\Rightarrow\left(y+5\right)\cdot\left(x-4\right)=-17\)
\(\Leftrightarrow x,y\in Z\)
Lập bảng giá trị:
\(y+5\) | \(-1\) | \(1\) | \(17\) |
\(-17\) |
\(x-4\) | \(17\) | \(-17\) | \(-1\) |
\(1\) |
\(y\) | \(-6\) | \(-4\) | \(12\) |
\(-22\) |
\(x\) | \(21\) | \(-13\) | \(3\) |
\(5\) |
Vậy \(\left(x;y\right)\in\left\{\left(21;-6\right),\left(-13;-4\right),\left(3;12\right),\left(5;-22\right)\right\}\)
Để A nhỏ nhất thì (x + 3)² + 1 nhỏ nhất
Ta có:
(x + 3)² ≥ 0
⇒ (x + 3)² + 1 ≥ 1
⇒ A nhỏ nhất là -5/1 = -5 khi x = -3
\(A=\dfrac{-5}{\left(x+3\right)^2+1}\) (Tìm số nguyên \(x\) để \(A_{min}\))
Vì \(\left(x+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+3\right)^2+1\ge1\forall x\)
\(\Rightarrow\dfrac{-5}{\left(x+3\right)^2+1}\ge-5\forall x\)
hay \(A\ge-5\)
Dấu \("="\) xảy ra:
\(\Leftrightarrow\left(x+3\right)^2=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=0-3=-3\left(TM\right)\)
Vậy \(M\in A=-5\Leftrightarrow x=-3\)
(\(x+2\)).(\(x^2\) + 1) ≥ 0
\(x^2\) ≥ 0 ∀ \(x\)
\(x^2\) + 1 ≥ 1 ∀ \(x\)
Lập bảng ta có:
\(x\) | -2 |
\(x+2\) | - 0 + |
\(x^2\) + 1 | + + |
(\(x+2\))(\(x^2\) + 1) | - 0 + |
Theo bảng trên ta có:
\(x\) ≥ -2
Vậy \(x\) ≥ -2
Ta có:
(a + 4b) ⋮ 13
⇒ 9(a + 4b) ⋮ 13
⇒ (9a + 36b) ⋮ 13
⇒ (9a + 36b + a + 4b) ⋮ 13
⇒ (10a + 40b) ⋮ 13
Lại có: 39b ⋮ 13
⇒ (10a + 40b - 39b) ⋮ 13
⇒ (10a + b) ⋮ 13
Mà (a + 4b) ⋮ 13
⇒ (a + 4b)(10a + b) ⋮ 13.13
⇒ (a + 4b)(10a + b) ⋮ 169
\(a+4b⋮13\Rightarrow11.\left(a+4b\right)=11a+44b⋮13\)
\(\Rightarrow\left(11a+44b\right)-\left(a+4b\right)=10a+40b=\left(10a+b\right)+39⋮13\)
Mà \(39⋮13\Rightarrow10a+b⋮13\)
Đặt
\(a+4b=13p;10a+b=13q\)
\(\Rightarrow\left(a+4b\right).\left(10a+b\right)=13p.13q=169pq⋮169\)
a; \(\dfrac{x}{7}\) = \(\dfrac{9}{y}\) (\(x>y\))
\(x.y\) = 7.9
\(xy\) = 63
Ư(63) = {-63;-21 -9; 7; -3; -1; 1; 3; 7; 9;21; 63}
Lập bảng ta có:
Vì \(x>y\) nên theo bảng trên ta có các cặp số nguyên \(x;y\) thỏa mãn đề bài là:
(\(x;y\)) = (-7; -9); (-3; -21); (-1; -63); (9; 7); (21; 3); (63; 1)
b; \(\dfrac{x}{15}\) = \(\dfrac{3}{y}\) Và \(x< y< 0\)
\(x.y\) = 3.15
\(xy\) = 45
45 = 32.5; Ư(45) = {-45; -15; -9; -5; -3; -1; 1; 3; 5; 9; 15; 45}
Lập bảng ta có:
Vì \(x< y< 0\)
Theo bảng trên ta có:
các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(-45; -1); (-15; -3); (-9; -5)