Mọi người làm được bài nào thì giúp mình với ạ,help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Theo bài ra ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4};2x-5y+3z=11\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x-5y+3z}{4-15+12}=11\Rightarrow x=22;y=33;z=44\)

`N-(6xy^2-5x)=(7+xy^2+5x)`
`-> N = ( 7 + xy^2 + 5x )+( 6xy^2 - 5x )`
`-> N = 7 + xy^2 + 5x +6xy^2 - 5x`
`-> N = ( 5x - 5x ) + ( 6xy^2 + xy^2 ) + 7`
`-> N = 7xy^2 + 7`

Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)
\(\Leftrightarrow4+2a=2\left|2a+3\right|\)
đk a >= -2
\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

A B C K H I
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)


4,35-(2,67-1,65)+(3,54-6,33)
= 4,35-2,67+1,65+3,54-6,33
=(4,35+1,65)-(2,67+6,33)+3,54
=6-9+3,54
=0,54

a/ Xét tg vuông AHI và tg vuông AKI có
AI chung
\(\widehat{BAI}=\widehat{CAI}\) (gt)
=> tg AHI = tg AKI (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=AK
b/
I thuộc trung trực của BC nên I cahcs đều B và C => IB=IC
c/
Xét tg vuông BHI và tg vuông CKI có
IB=IC (cmt)
tg AHI = tg AKI (cmt) => IH=IK
=> tg BHI = tg CKI (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) => BH=CK
Bài 4:
\(f\left(x\right)+x.f\left(-x\right)=x+1\) (*)
Thay \(x=1\) vào (*), ta có:
\(f\left(1\right)+1.f\left(-1\right)=1+1\Rightarrow f\left(1\right)+f\left(-1\right)=2\) (**)
Thay \(x=-1\) vào (*), ta có:
\(f\left(-1\right)+\left(-1\right).f\left(-\left(-1\right)\right)=-1+1\Rightarrow f\left(-1\right)-f\left(1\right)=0\) (***)
Trừ (**) và (***) vế theo vế, ta có:
\(\left(f\left(1\right)+f\left(-1\right)\right)-\left(f\left(-1\right)-f\left(1\right)\right)=2-0\)
\(\Rightarrow f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\)
\(\Rightarrow\left(f\left(1\right)+f\left(1\right)\right)+\left(f\left(-1\right)-f\left(-1\right)\right)=2\)
\(\Rightarrow2.f\left(1\right)=2\)
\(\Rightarrow f\left(1\right)=1\)