Giải phương trình : 9x2=\((x^2+x-5).(\sqrt{3x+1}-1)^2\)]2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)
\(A=\frac{x}{\sqrt{xy}-y}+\frac{y}{\sqrt{xy}+x}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\sqrt{y}}+\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\sqrt{x}}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)+y\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)-\left(x+y\right)\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\sqrt{xy}}\)
\(A=\frac{x^2+x\sqrt{xy}+y\sqrt{xy}-y^2-x^2+y^2}{\left(x-y\right)\sqrt{xy}}\)
\(A=\frac{\left(x+y\right)\sqrt{xy}}{\left(x-y\right)\sqrt{xy}}=\frac{x+y}{x-y}\)
đk: \(x\ge0;x\ne16\)
\(\frac{x\sqrt{x}-2\sqrt{x}+28}{x-3\sqrt{x}-4}-\frac{\sqrt{x}-4}{\sqrt{x}+1}-\frac{\sqrt{x}+8}{\sqrt{x}-4}\)
\(=\frac{x\sqrt{x}-2\sqrt{x}+28-\left(\sqrt{x}-4\right)^2-\left(\sqrt{x}+8\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x\sqrt{x}-2\sqrt{x}+28-x+8\sqrt{x}-16-x-9\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{x\sqrt{x}-2x-3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(x\sqrt{x}-x\right)-\left(x-\sqrt{x}\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)
:vvv
Hok tốt
MO là trung trực của AI => MO vuông góc AI, có BI vuông góc AI => MO || BI
Ta thấy MA.MI là hai tiếp tuyến kẻ từ M đến (O), MCD là cát tuyến của (O), do đó (ICAD)=−1(ICAD)=−1
Vì B nằm trên (O) nên B(ICAD)=−1B(ICAD)=−1, mà MO || BI, MO cắt BC,BA,BD tại E,O,F nên O là trung điểm EF.
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
Theo bài ra, ta có:
x+y+z=3
\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cau-chy ngược dấu ta có:
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu '=' xảy ra <=> a=3;b=2;c=1
*Bài khá giống bạn kia :)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
\(\Rightarrow x+y+z=3\)
BĐT cần chứng minh trở thành :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cô Si ngược dấu ta có :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)
\(\hept{\begin{cases}2x+y=5m-6\\x-2y=2\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}5y=5m-10\\x-2y=2\end{cases}}}\)
\(\left(1\right)\Rightarrow y=\frac{5m-10}{5}=m-2\)
Thay vào phương trình (2) ta được :
\(x-2\left(m-2\right)=2\Leftrightarrow x=2+2m-4=2m-2\)
Vậy hệ phương trình có nghiệm ( x ; y ) = ( 2m - 2 ; m - 2 ) (*)
Thay (*) vào biểu thức trên ta được :
\(2\left(2m-2\right)^2-\left(m-2\right)^2=4\)
\(\Leftrightarrow2\left(4m^2-8m+4\right)-m^2+4m-4=4\)
\(\Leftrightarrow8m^2-16m+8-m^2+4m-4=4\)
\(\Leftrightarrow7m^2-12m=0\Leftrightarrow m\left(7m-12\right)=0\Leftrightarrow m=0;m=\frac{12}{7}\)
\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}}\)
\(5y=5m-10\)
\(y=m-2\)
\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}< =>\hept{\begin{cases}2x+\left(m-2\right)=5m-6\\2x-4\left(m-2\right)=4\end{cases}}}\)
\(< =>x-2\left(m-2\right)=2\)
\(x-2m+4=2\)
\(x=2m-2\)
\(< =>2x^2-y^2=4\)
\(2\left(4m^2-8m+4\right)-\left(m^2-4m+4\right)\)
\(8m^2-16m+8-m^2+4m-4-4=0\)
\(7m^2-12m=0\)
\(m\left(7m-12\right)=0\)
\(\orbr{\begin{cases}m=0\\m=\frac{12}{7}\end{cases}}\)
ĐK : x ≥ 0
Xét hiệu M - M2 ta có : M - M2 = M( 1 - M )
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\left(1-\frac{\sqrt{x}+1}{\sqrt{x}+2}\right)=\frac{\sqrt{x}+1}{\sqrt{x}+2}\left(\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+2}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}\)(1)
Dễ chứng minh (1) > 0 ∀ x ≥ 0
=> M - M2 > 0 <=> M > M2
Vậy ...