Cho \(a,b,c>0\)và \(a^2+b^2+c^2=3\)Chứng minh rằng :
\(2\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
p/s : vô cùng đơn giản nếu sử dụng pqr
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
\(\sqrt{5-2\sqrt{6}}=\sqrt{5-2\sqrt{2.3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{2.3}+\left(\sqrt{2}\right)^2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)vì \(\sqrt{3}-\sqrt{2}>0\)
\(\sqrt{8-2\sqrt{15}}=\sqrt{8-2\sqrt{5.3}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)vì \(\sqrt{5}-\sqrt{3}>0\)
Đk: \(x\ge0\)
Ta thấy x=0 không thoả mãn phương trình đầu tiên => x>0
Chia hai vế của pt (2) cho x2 ta được:
\(2y\left(1+\sqrt{4y^2+1}\right)=\frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
\(\Rightarrow y>0\)
+ Nếu \(2y>\frac{1}{x}\)\(\Rightarrow2y\left(1+\sqrt{4y^2+1}\right)>\frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
+ Nếu \(2y< \frac{1}{x}\Rightarrow2y\left(1+\sqrt{4y^2+1}\right)< \frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
\(\Rightarrow2y=\frac{1}{x}\). Thay vào pt(1) ta được:
\(x^3\left(\frac{1}{x^2}+1\right)+2\sqrt{x}=4\)
hay \(x^3+x+2\sqrt{x}=4\)
Ta thấy x=1 là nghiệm của pt trên.
+ Nếu \(x>1\Rightarrow x^3+x+2\sqrt{x}>4\)
+ Nếu \(x< 1\Rightarrow x^3+x+2\sqrt{x}< 4\)
Vậy pt trên có nghiệm duy nhất là x=1
\(\Rightarrow y=\frac{1}{2}\)
KL: hpt đã cho có nghiệm (x;y)=(1;1/2)
PM tiếp xúc vs (O) = > PM là tiếp tuyến của (O)
a, Chứng minh tứ giác APMO nội tiếp ( tổng 2 góc đối = 180 độ )
=> Góc APM + góc AOM = 180 độ
Mà góc AOM + góc MOB = 180 độ (kề bù)
=> Góc APM = góc MOB (đpcm)
Bài 2:
2) \(\hept{\begin{cases}3x+2y=10\\2x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+2y=10\\4x-2y=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}7x=10+2m\\y=2x-m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+10}{7}\\y=\frac{20-3m}{7}\end{cases}}\)
\(\hept{\begin{cases}x>0\\y< 0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2m+10}{7}>0\\\frac{20-3m}{7}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-5\\m>\frac{20}{3}\end{cases}}\Leftrightarrow m>\frac{20}{3}\).
Bài 3:
3) (d') song song (d) nên (d') có dạng: \(y=5x+k,k\ne6\).
Phương trình hoành độ giao điểm (d') và (P) là:
\(-x^2=5x+k\Leftrightarrow x^2+5x+k=0\)(1)
(d') cắt (P) tại hai điểm phân biệt khi phương trình (1) có hai nghiệm phân biệt.
Khi đó:
\(\Delta>0\Leftrightarrow5^2-4.k.1=25-4k>0\Leftrightarrow k< \frac{25}{4}\).
Khi \(k< \frac{25}{4}\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2\).
Theo định lí Viete:
\(x_1x_2=k\)suy ra \(k=-24\)(thỏa mãn)
Vậy (d'): \(y=5x-24\)
\(\sqrt{1+\sqrt{6}}\)lớn hơn
Đoán vậy k biết đúng / sai
HOK T ~
Cứ tưởng phải biến đổi \(9=3\left(p^2-2q\right)=\left(p^2-2q\right)^2\) loay hoay mãi không ra:))
Schur à, xin lời giải đi:D