cho 3 số x;y;z>0 thỏa mãn x+y+z=3.Tìm Min của biểu thức:
\(A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
Ta có
\(x^2+x^2y^2-2y=0\)
\(\Leftrightarrow x^2=\frac{2y}{y^2+1}\le1\left(\left(y-1\right)^2\ge0\right)\)
\(\Leftrightarrow-1\le x\le1\)(1)
Ta lại có
\(x^3+2y^2-4y+3=0\)
\(\Leftrightarrow x^3=-2y^2+4y-3\)
\(=\left(-2y^2+4y-2\right)-1\)
\(=-1-2\left(y-1\right)^2\le-1\)
\(\Rightarrow x\le-1\)(2)
Từ (1) và (2) \(\Rightarrow x=-1\Rightarrow x^2=1\)
\(\Rightarrow y^2-2y+1=0\)
\(\Rightarrow y=1\Rightarrow y^2=1\)
\(\Rightarrow Q=x^2+y^2=1+1=2\)
Để cho (n2 +2) chia hết cho 5 thì n2 phải có tận cùng là 3 hoặc 8
Mà n2 là 1 số chính phương nên không bao giờ có tận cùng là 3 hoặc 8.
Từ đó ta có (n2 +2) không chia hết cho 5 với mọi số tự nhiên n
Vậy phân số \(\frac{n^2+2}{5}\)là phân số tối giản với mọi số tự nhiên n