Tìm giá trị nhỏ nhất của: \(^{\left(x-3\right)^2-\left|2x+y\right|}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét 2 tam giác vuông BMC và CND có :
BM=CN (bằng nửa cạnh hình vuông); BC=CD
=> Tam giác BMC = Tam giác CND (c.g.c)
=> Góc BCM = Góc CDN
mà Góc BCM + góc DCM = 90 độ
=> Góc CDN + Góc DCN = 90 độ
=> Tam giác CDI vuông tại I
=> CM vuông góc với DN
Gọi P là trung điểm của CD, AP cắt DN tại H
Ta có PC= 1/2 DC
mà AM = 1/2 AB
lại có AB=CD (vì ABCD là hình vuông)
=> AM=PC
mặt khác AM // PC (vì AB // CD)
=> AMCP là hình bình hành
=> AP // CM
mà CM vuông góc với DN (cmt)
=> AP vuông góc với DN tại H
Tam giác CDI có CP= DP, PH // CI (vì AP // CM)
=> DH=HI
Tam giác ADI có AH là đường cao (vì AH vuông góc với DI)
AH là trung tuyến (vì DH= HI)
=> Tam giác ADI cân tại A
=> AI = AD
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: AB+CD=2MN(t/c đg tb của ht)
=>AB=16
Vì ABCD là thang cân=> AD=BC, góc A=B=1200, góc D=C=60o
Xét tam giác AKD và BHC
AK=BH(từ vuông góc -> //)
AB=BC
gocsD=C=60
=>AKD=BHC=>Dk=HC
Ta có: DC=DK+AB+HC
=>DK=4
Xét tam giác ADK vuông tại K, có DAK=300=>DK=1/2AD(t/c tam giác vg)=>AD=8
Áp dg đ/l Py-ta-go vào tam giác vuông AKD
AD2=AK2+DK2
=>AK=6,9
SABCD=\(\frac{\left(24+16\right).6,9}{2}\)=138 cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài thiếu chi tiết rồi nha bạn ! Có rất nhiều số !
Các số đó là : 0, 1, 2, 3, .....................
Dãy số được tạo nên bởi các số từ 0 đến 9 là vô tận, vì vậy không thể tính số số hạng vì cần số cuối.
→ Đề bài thiếu ←
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử
\(\hept{\begin{cases}\left(a+b+c\right)^2\le9ab\\\left(a+b+c\right)^2\le9bc\\\left(a+b+c\right)^2\le9ca\end{cases}}\)
Cộng vế theo vế được
\(3\left(a+b+c\right)^2\le9ab+9bc+9ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\le3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)a2 + b2 + c2 \(\le\)ab + bc + ca (1)
Ta lại có:
a2 + b2 + c2 \(\ge\)ab + bc + ca (2)
Từ (1) và (2)
\(\Rightarrow\)a2 + b2 + c2 = ab + bc + ca
\(\Rightarrow\)a = b = c (trái giả thuyết)
\(\Rightarrow\)Giả sử là sai
Vậy tồn tại một trong các số 9ab , 9bc , 9ca nhỏ hơn ( a+b+c )2
![](https://rs.olm.vn/images/avt/0.png?1311)
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK
Ta thấy: \(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left|2x+y\right|\ge0\end{cases}}\)
\(\Rightarrow\left(x-3\right)^2-\left|2x+y\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-3\right)^2=0\\\left|2x+y\right|=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3=0\\2x+y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\2\cdot3+y=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=-6\end{cases}}\)
Vậy Min=0 khi \(\hept{\begin{cases}x=3\\y=-6\end{cases}}\)