K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2024

Vì \(13\times14\times15\times16\times17\times18=13366080=\overline{133660∗0}\) nên:

\(∗=8\)

Vậy \(∗=8\)

2 tháng 7 2024

           Giải:

13 x 14 x 15 x 16 x 17 x 18 = \(\overline{133660a0}\)

Vì 18 ⋮ 9 nên \(\overline{133660a0}\) ⋮ 9

Vậy 1 + 3+ 3+ 6+ 6+ a + 0 ⋮ 9

     (1 + 3 + 6) + (3 + 6)  + a ⋮ 9

            10 + 9 + a  ⋮ 9

              19 + a ⋮ 9

              19 + a = 27

                     a =  27 - 19 

                     a = 8

Vậy \(\overline{133660a0}\) = 13366080 

Đáp số: 13366080

 

\(168\times48-43\times48+120\times54\)

\(=48\times\left(168-43\right)+48\times135\)

\(=48\times125+48\times135\)

\(=48\times260=12480\)

2 tháng 7 2024

giúp mình được ko

 

2 tháng 7 2024

cho tớ hỏi giữa 9 và 11 là kí hiệu j vậy ak

3 tháng 7 2024

lưu ý:9 11 là 9/11 nhé

2 tháng 7 2024

Để so sánh hai số 0.25 và 0.6, ta có thể sử dụng các cách sau:

1. So sánh trực tiếp:

Nhìn vào hai số, ta có thể thấy 0.6 lớn hơn 0.25.

2. Vẽ số trên trục số:

  • Vẽ trục số và đánh dấu các điểm 0, 0.25 và 0.6.

  • Qua hình vẽ, ta thấy điểm 0.6 nằm xa điểm 0 hơn so với điểm 0.25. Do đó, 0.6 lớn hơn 0.25.

3. Sử dụng biểu đồ số:

  • Vẽ biểu đồ số với hai thanh có chiều cao tương ứng với 0.25 và 0.6. So sánh 0.25 và 0.6 bằng biểu đồ số
  • Chiều cao của thanh 0.6 cao hơn so với thanh 0.25. Do đó, 0.6 lớn hơn 0.25.

Kết luận:

Bằng cả ba cách so sánh trên, ta có thể cho thấy: 0.6 lớn hơn 0.25.

Ngoài ra, ta cũng có thể sử dụng các phép toán sau để so sánh hai số:

  • 0.6 - 0.25 = 0.35 > 0
  • 0.25 / 0.6 = 0.4167 < 1

Cả hai phép toán này đều cho ta kết quả 0.6 lớn hơn 0.25.

2 tháng 7 2024

0,6 > 0,25

2 tháng 7 2024

\(B=\left[\left(-0,5\right):0,07-0,2:0,07\right]\cdot1,5-2024^0\\ =\left[\left(-0,5\right):\dfrac{7}{100}-0,2:\dfrac{7}{100}\right]\cdot1,5-1\\ =\left[\left(-0,5\right)\cdot\dfrac{100}{7}-0,2\cdot\dfrac{100}{7}\right]\cdot1,5-1\\ =\dfrac{100}{7}\cdot\left(-0,5-0,2\right)\cdot1,5-1\\ =\dfrac{100}{7}\cdot-0,7\cdot1,5-1\\ =\dfrac{100}{7}\cdot\dfrac{-7}{10}\cdot1,5-1\\ =-10\cdot1,5-1\\ =-15-1\\ =-16\)

2 tháng 7 2024

cứu với

1
2 tháng 7 2024

x, y là 2 đại lượng tỉ lệ nghịch nên ta có: \(xy=k=>k=4\cdot1,5=6\) 

\(x=0,5=>y=\dfrac{k}{x}=\dfrac{6}{0,5}=12\)

\(x=-1,2=>y=\dfrac{k}{x}=\dfrac{6}{-1,2}=-5\) 

\(y=3=>x=\dfrac{k}{y}=\dfrac{6}{3}=2\)

\(y=-2=>x=\dfrac{k}{y}=\dfrac{6}{-2}=-3\)

x               0,5             -1,2          2           -3             4      
y      12      -5    3     -2    1,5

 

1
2 tháng 7 2024

x và y là 2 đại lượng tỉ lệ nghịch nên: \(xy=k=>k=-2\cdot-15=30\) 

\(x=10=>y=\dfrac{k}{x}=\dfrac{30}{10}=3\) 

\(y=-3=>x=\dfrac{30}{-3}=-10\)

\(x=15=>y=\dfrac{k}{x}=\dfrac{30}{15}=2\)

\(y=5=>x=\dfrac{k}{y}=\dfrac{30}{5}=6\)

x               -2           10         -10              15             6      
y    -15      3    -3       2     5

 

1
2 tháng 7 2024

\(\left[\left(-\dfrac{1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3\cdot\left(-2\right)^2\right]:\left[2\cdot\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}\right]\\ =\left(-\dfrac{1}{8}-\dfrac{27}{64}\cdot4\right):\left(2\cdot-1+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(-\dfrac{1}{8}-\dfrac{27}{16}\right):\left(-2+\dfrac{9}{16}-\dfrac{3}{8}\right)\\ =\left(\dfrac{-2}{16}-\dfrac{27}{16}\right):\left(\dfrac{-32}{16}+\dfrac{9}{16}-\dfrac{6}{16}\right)\\ =\dfrac{-29}{16}:\dfrac{-29}{16}\\ =1\)

____________________________

\(\left[3\dfrac{1}{6}-\left(0,06\cdot7\dfrac{1}{2}+6\dfrac{1}{4}\cdot0,24\right)\right]:\left(1\dfrac{2}{3}+2\dfrac{2}{3}\cdot1\dfrac{3}{4}\right)\\ =\left[\dfrac{19}{6}-\left(0,06\cdot\dfrac{15}{2}+\dfrac{25}{4}\cdot4\cdot0,06\right)\right]:\left(\dfrac{5}{3}+\dfrac{8}{3}\cdot\dfrac{7}{4}\right)\\ =\left[\dfrac{19}{6}-0,06\cdot\left(\dfrac{15}{4}+25\right)\right]:\left(\dfrac{5}{3}+\dfrac{14}{3}\right)\\ =\left(\dfrac{19}{6}-0,06\cdot\dfrac{65}{2}\right):\dfrac{19}{3}\\ =\left(\dfrac{19}{6}-\dfrac{39}{20}\right):\dfrac{19}{3}\\ =\dfrac{73}{60}:\dfrac{19}{3}\\ =\dfrac{73}{380}\)

`#3107.101107`

`a,`

`x - 315 =121 + 89`

`x - 315 = 210`

`x = 210 + 315`

`x = 525`

Vậy, `x = 525`

`b,`

`x + 326 = 558 - 18`

`x + 326 = 540`

`x = 540 - 326`

`x = 214`

Vậy, `x = 214`

`c,`

`x \times 4 = 21 + 15`

`x \times 4 = 36`

`x = 36 \div 4`

`x = 9`

Vậy, `x = 9`

`d,`

`x \div 5 = 108 - 99`

`x \div 5 = 9`

`x = 9 \times 5`

`x = 45`

Vậy, `x = 45.`

2 tháng 7 2024

a) x - 315 = 121 + 89

 x - 315 = 210 

 x = 210 + 315

 x = 525 

b) x + 326 = 558 - 18

 x + 326 = 540 

 x = 540 - 326

 x = 214 

c)

\(x\times4=21+15\\ x\times4=36\\ x=36:4\\ x=9\) 

d) 

\(x:5=108-99\\ x:5=9\\ x=5\times9\\ x=45\)

2 tháng 7 2024

b) Để ý rằng phương trình của trục Ox là \(y=0\). Do đó pt hoành độ giao điểm của Ox và d là \(\left(m^2+1\right)x_A-2m=0\Leftrightarrow x_A=\dfrac{2m}{m^2+1}\)

 Mà \(OA=\left|x_A\right|=\left|\dfrac{2m}{m^2+1}\right|=\dfrac{2\left|m\right|}{m^2+1}\) , \(OA=\dfrac{4}{5}\)

\(\Rightarrow\dfrac{2\left|m\right|}{m^2+1}=\dfrac{4}{5}\) 

\(\Leftrightarrow2m^2-5\left|m\right|+2=0\)

Xét \(m\ge0\), khi đó \(2m^2-5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)

Xét \(m< 0\), khi đó \(2m^2+5m+2=0\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-2\end{matrix}\right.\) (nhận)

Vậy \(m\in\left\{\pm2;\pm\dfrac{1}{2}\right\}\) thỏa mãn ycbt.

c) Theo câu b), ta có \(OA=\dfrac{2\left|m\right|}{m^2+1}\). d cắt Oy tại \(B\left(0,-2m\right)\)

\(\Rightarrow OB=\left|-2m\right|=2\left|m\right|\)

Có \(OA=2OB\Leftrightarrow\dfrac{2\left|m\right|}{m^2+1}=4\left|m\right|\)

\(\Leftrightarrow\left|m\right|\left(2-\dfrac{1}{m^2+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\2m^2+1=0\left(vôlý\right)\end{matrix}\right.\)

Vậy \(m=0\) thỏa mãn ycbt.

d) Gọi \(h\) là khoảng cách từ O đến d thì khi đó:

\(\dfrac{1}{h^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(=\dfrac{1}{\left(\dfrac{2\left|m\right|}{m^2+1}\right)^2}+\dfrac{1}{\left(2\left|m\right|\right)^2}\)

\(=\dfrac{m^4+2m^2+1}{4m^2}+\dfrac{1}{4m^2}\)

\(=\dfrac{m^4+2m^2+2}{4m^2}\)

\(\Rightarrow h^2=\dfrac{4m^2}{m^4+2m^2+2}\)

Đặt \(t=m^2\left(t>0\right)\) thì ta có \(h^2=\dfrac{4t}{t^2+2t+2}=P\)

\(\Leftrightarrow Pt^2+2\left(P-2\right)t+2P=0\)    (*)

Có \(\Delta'=\left(P-2\right)^2-2P^2=P^2-4P+4-2P^2=-P^2-4P+4\)

\(\Delta'\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Ta thấy \(P=\dfrac{2P}{P}=2>0\) nên để pt đã cho có 1 nghiệm dương thì \(S>0\Leftrightarrow-2\left(P-2\right)>0\Leftrightarrow P< 2\) 

 Kết hợp 2 điều kiện, ta được \(-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

 Vậy \(maxP=-2+2\sqrt{2}\). Dấu "=" xảy ra khi \(t=\dfrac{-2\left(-2+2\sqrt{2}-2\right)}{2\left(-2+2\sqrt{2}\right)}=\sqrt{2}\) 

\(\Leftrightarrow m^2=\sqrt{2}\Leftrightarrow m=\pm\sqrt[4]{2}\)

Vậy \(m=\pm\sqrt[4]{2}\) thỏa mãn ycbt.