2x . (8y + 3 - 5x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy rằng 894 là 1 số chẵn nên sẽ là tổng của 2 số chẵn, 2 lẻ 1 chẵn. Mà số nguyên tố chẵn duy nhất là 2 (cũng là nhỏ nhất).
Vậy số nguyên tố nhỏ nhất cần tìm là 2
có vẻ thiếu cái gì đó. nếu DS=2
khi đó 894-2=892
Liệu có 892 có phân tích được thành 2 số nguyên tố.
Ta có:
( n2 - 8 )2 + 36
= n4 - 16n2 + 64 + 36
= n4 + 20n2 + 100 - 36n2
= ( n2 + 10 )2 - ( 6n )2
= ( n2 + 10 + 6n )(n2 + 10 - 6n)
Mà để (n2 + 10 + 6n)(n2 + 10 - 6n) là số nguyên tố thì n2 + 10 + 6n = 1 hoặc n2 + 10 - 6n = 1
Mặt khác ta có: n2 + 10 - 6n < n2 + 10 + 6n \(\Rightarrow\)n2 + 10 - 6n = 1 ( n \(\in\)N )
n2 + 9 - 6n = 0 hay ( n - 3 )2 = 0 \(\Rightarrow\)n = 3
Vậy với n = 3 thì ( n2 - 8 ) là số nguyên tố
Ta có: a, b, c là độ dài ba cạnh của tam giác
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c-a}\\\frac{b}{a+c-b}\\\frac{c}{a+b-c}\end{cases}}>0\)
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(A+\frac{3}{2}=\frac{a}{b+c-a}+\frac{1}{2}+\frac{b}{a+c-b}+\frac{1}{2}+\frac{c}{b+a-c}+\frac{1}{2}\)
\(A+\frac{3}{2}=\frac{a+b+c}{2\left(b+c-a\right)}+\frac{a+b+c}{2\left(a+c-b\right)}+\frac{a+b+c}{2\left(b+a-c\right)}\)
\(A+\frac{3}{2}=\frac{\left(a+b+c\right)}{2}\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{b+a-c}\right)\)
\(A+\frac{3}{2}\ge\frac{a+b+c}{2}.\frac{9}{b+c-a+a+c-b+b+a-c}\)
\(A+\frac{3}{2}\ge\frac{9}{2}\)
\(\Rightarrow A\ge3\)
? đề bài là gì