Cho đường tròn (O), đường kính AB = 2R. Gọi d1, d2 lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1, d2 lần lượt tại M, N.
1. Chứng minh tư giác AMEI nội tiếp. 2. Chứng minh AM. BN = AI.BI.Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
\(\sqrt{32-10\sqrt{7}}-\sqrt{43-12\sqrt{7}}\)
\(=\sqrt{32-2.5\sqrt{7}}-\sqrt{43-2.6\sqrt{7}}\)
\(=\sqrt{25-2.5\sqrt{7}+7}-\sqrt{36-2.6\sqrt{7}+7}\)
\(=\sqrt{\left(5-\sqrt{7}\right)^2}-\sqrt{\left(6-\sqrt{7}\right)^2}\)
\(=5-\sqrt{7}-6+\sqrt{7}=-1\)
b) Ta có: \(hpt\Leftrightarrow\hept{\begin{cases}5x=5m\\2x-y=m-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=m\\2m-y=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=m\\y=m+1\end{cases}}}\)
Mà x+y>1 => m+m+1>1 <=> 2m>0 <=>m>0
Vậy m>0 (Tm)
Cứ tưởng phải biến đổi \(9=3\left(p^2-2q\right)=\left(p^2-2q\right)^2\) loay hoay mãi không ra:))
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
\(\sqrt{5-2\sqrt{6}}=\sqrt{5-2\sqrt{2.3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{2.3}+\left(\sqrt{2}\right)^2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)vì \(\sqrt{3}-\sqrt{2}>0\)