Phân tích đa thức thành nhân tử:
a) 3 (x4 + x2 + 1) - (x2 + x + 1)2
b) 4x4 + 4x3 + 5x2 + 2x + 1
c) x8 + x + 1
d) x8 + 3x4 + 1
e)x4 - 8x + 63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3+13x2+7x-5
= x3+x2+12x2+12x-5x-5
=(x3+12x2-5x)+(x2+12x-5)
=x(x2+12x-5)+1(x2+12x-5)
=(x+1)(x2+12x-5)
phân tích đa thức thành nhân tử:
x3+13x2+7x-5
= x3+x2+12x2+12x-5x-5
=(x3+12x2-5x)+(x2+12x-5)
=x(x2+12x-5)+1(x2+12x-5)
=(x+1)(x2+12x-5)
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 99 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
tích nha
a)pt<=>(x-2)(x-1)=0
b)<=>(x-1)(2x-3)=0
c)\(pt\Leftrightarrow\left(x+3\right)^2+1>0\)
d)\(\left(x-2\right)\left(x-1\right)\left(x+2\right)=0\)
mk pt hộ bn r` đấy, h thì quá dễ
a, x^2-3x+2
=x^2-x-2x+2
=x(x-1)-2(x-1)
=(x-1)(x-2)
PT : (x-1)(x-2)=0
=> Nghiem cua PT : x=1 va x=2
b, 2x^2-5x+3
=2x^2-2x-3x+3
=2x(x-1)-3(x-1)
=(2x-3)(x-1)
PT : (2x-3)(x-1)=0
Vay nghiem cua PT x=1,5 va x=1
c, x^2+6x+10
=x^2+6x+9+1
=(x+3)^2+1
PT : (x+3)^2+1=0
Vay nghiem cua PT tren vo nghiem .
d, x^3-x^2-4x+4
=x^3-4x-x^2+4
=x(x^2-4)-(x^2-4)
=x(x-2)(x+2)-(x-2)(x+2)
=(x-2)(x+2)(x-1)
PT : (x-2)(x+2)(x-1)=0
Vay nghiem cua PT la :x=2;-2;1
\(\left(x+7\right)\left(x-7\right)+3x=x\left(x+3\right)+49\)
\(\Leftrightarrow x^2-49+3x=x^2+3x+49\)
<=>-98=0 (rất vô lý)
pt vn
hình chỉ biết số học thôi chứ hình thì dốt lắm
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Bài làm:
+Tìm Min:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)
Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)
Vậy \(Min=-1\Leftrightarrow x=-2\)
+Tìm Max:
Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)
Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)
1 cách làm khác :3
\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)
\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)
Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)
\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)
Điểm rơi khó chết luôn á :(
b/ 4x4 + 4x3 + 5x2 + 2x + 1
= (4x4 + 4x3 + x2) + 2(2x2 + x) + 1
= (2x2 + x)2 + 2(2x2 + x) + 1
= (2x2 + x + 1)2
c/ x8 + x + 1 = (x2 + x + 1)(x6 - x5 + x3 - x2 + 1)
e/ x4 - 8x + 63 = (x2 - 4x + 7)(x2 + 4x + 9)
\(a,...3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)\(=3\left(x^4+x^2+1\right)-\left(\left(x^4+x^2+1\right)+2\left(x^3+x^2+x\right)\right)\)
\(2\left(x^4+x^2+1\right)-2\left(x^3+x^2+x\right)=2\left(x^4-x^3-x+1\right)\) \(2\left(x^3\left(x-1\right)-\left(x-1\right)\right)=2\left(x-1\right)\left(x^3-1\right)\)
\(2\left(x-1\right)^2\left(x^2+x+1\right)\)