CM NẾU \(\frac{X}{A+2B+C}=\frac{Y}{2A+B-C}=\frac{Z}{4A-4B+C}\) THÌ \(\frac{A}{X+2Y+Z}=\frac{B}{2X+Y-Z}=\frac{C}{4X-4Y+Z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x -2 = 2x - 3
=> 3x - 2x = 2 - 3
=> x= - 1
b, là tương tự câu a
các câu sau bạn nhân phá ra mà giải nhé
a, 3x - 2 = 2x - 3
3x - 2x = -3 + 2
x = -1
b, 3 - 4u + 24 + 6u = u + 27 + 3u
-4u + 6u - u - 3u = 27 - 3 - 24
-2u = 0
u = 0 : (-2)
u = 0
c, 5 - (x - 6) = 4(3 - 2x)
5 - x + 6 = 12 - 8x
-x + 8x = 12 - 5 - 6
7x = 1
x = 1/7
d, -6(1,5 - 2x) = 3(-15 + 2x)
-9 + 12x = -45 + 6x
12x - 6x = -45 + 9
6x = -36
x = (-36) : 6
x = -6
e, 0,1 - 2(0,5 - 0,1) = 2(t - 2,5) - 0,7
0,1 - 1 + 0,2 = 2t - 5 - 0,7
-2t = -5 - 0,7 - 0,1 + 1 - 0,2
-2t = -5
t = -5/-2
t = 5/2
Đề sai thì phải
\(B=\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n+1}\)
Số số hạng của dãy: \(\frac{\left(2n+1-1\right)}{2}+1=n+1\) (số hạng)
Ta có: \(B=\frac{\left(1+\frac{1}{2n+1}\right)\left(n+1\right)}{2}=\frac{\frac{2n+2}{2n+1}.\left(n+1\right)}{2}\)
\(=\frac{\left[\frac{2n^2+4n+2}{2n+1}\right]}{2}=\frac{\left[\frac{2\left(n+1\right)^2}{2}\right]}{2}\)
\(=\frac{2\left(n+1\right)^2}{4}=\frac{1}{2}\left(n+1\right)^2\).
Với n = 1 thì B = \(\frac{1}{2}.4=2\) (là số nguyên) (chắc mình làm sai quá)
Bài này cũng không khó đâu. Áp dụng tính chất dãy tỷ số = nhau là ra đó b
Dãy tỉ số bằng nhau à ? ‹(•¿•)›