1, ( x - 3 )2 - (2x + 1 )2 = 0
2, x2 - 6x -7 = 0
3, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x-2}{2}\)
4, \(\frac{2x+1}{3}-x+2=\frac{x}{2}\)
5, x2 - x - ( 2x - 2 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7
Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]
= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )
Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )
n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )
Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )
Ta thấy A là tích của 7 số nguyên liên tiếp nên :
- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )
- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )
- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )
- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )
A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040
x-3/13+x-3/14=x-3/15+x-3/16
<=> x-3/13+x-3/14-x-3/15-x-3/16=0
<=> (x-3).(1/13+1/14-1/15-1/16)
<=> (x-3)=0 ( Vì 1/13+1/14-1/15-1/16>0)
<=> x-3=0 => x=3
Vậy x=3
A=2(x2 -\(\frac{1}{2}\)x -\(\frac{1}{2}\))
=2(x2 - 2.\(\frac{1}{4}\)x + \(\frac{1}{16}\)- \(\frac{9}{16}\))
=2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\). Vì 2(x - \(\frac{1}{4}\))2 lớn hơn hoặc bằng 0
=> 2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\)lớn hơn hoặc bằng - \(\frac{9}{8}\)
Vậy GTNN của a là - \(\frac{9}{8}\) khi x - \(\frac{1}{4}\)= 0 => x = \(\frac{1}{4}\)
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
5) x^2-3x+2=x(x-1)-2(x-1)=(x-1)(x-2)=> x=1 hoặc x=2
Góp 1 câu:
2) x^2 - 6x - 7 = 0
<=> x^2 + x -7x - 7 = 0
<=> x (x+1) -7 (x+1) = 0
<=> (x+1) (x-7) = 0
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\x-7=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0-1\\x=0+7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=7\end{cases}}\)