Cho A = 1+2+22 + 23+24+.......+ 299
a, CMR : A \(⋮\) 3
b, CMR : A\(⋮\) 15
c. SS : A và 2100
Giúp mình với ^-^ ^-^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+2^4+...+2^{50}\)
\(2A=2+2^2+2^3+2^4+...+2^{51}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{51}\right)-\left(1+2+2^2+2^3+2^4+...+2^{50}\right)\)
\(A=2^{51}-1=2\cdot2^{50}-1\)
Mà \(2^{51}=2\cdot2^{50}\)
=> A < 251
Bài làm:
\(x^{15}=x\)
\(\Leftrightarrow x^{15}-x=0\)
\(\Leftrightarrow x\left(x^{14}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Gọi số học sinh giỏi , khá và trung bình lần lượt là x , y , z ( x,y,z > 0 ; x,y,z thuộc N )
Số học sinh giỏi chiếm 1/5 số học sinh cả lớp : \(x=\frac{1}{5}.\left(x+y+z\right)\)(2)
có 1/4 số học sinh cả lớp là học sinh khá : \(y=\frac{1}{4}.\left(x+y+z\right)\)(3)
Còn lại là học sinh trung bình : \(z=\left(x+y+z\right)-\frac{x+y+z}{5}-\frac{x+y+z}{4}\)(4)
Từ 1 ; 2 ; 3 và 4 trên suy ra hệ 3 phương trình sau :
\(\hept{\begin{cases}x=\frac{1}{5}.\left(x+y+z\right)\\y=\frac{1}{4}.\left(x+y+z\right)\\z=\left(x+y+z\right)-\frac{x+y+z}{5}-\frac{x+y+z}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}x=\frac{1}{5}.40=8\left(tmđk\right)\\y=\frac{1}{4}.40=10\left(tmđk\right)\\z=40-8-10=22\left(tmđk\right)\end{cases}}\)
Vậy số học sinh giỏi , khá và trung bình lần lượt là 8 ; 10 và 22 (học sinh)
\(A=\left(\frac{878787}{959595}+-\frac{8787}{9595}\right).\frac{1234231}{5678765}\)
\(=\left(\frac{87}{95}+-\frac{87}{95}\right).\frac{1234231}{5678765}\)
\(=0.\frac{1234231}{5678765}=0\)
Ta có :
\(A=\left(\frac{878787}{959595}+\frac{-8787}{9595}\right)\)\(.\frac{1234231}{5678765}\)
\(A=\left(\frac{878787\div10101}{959595\div10101}-\frac{8787\div101}{9595\div101}\right)\)\(.\frac{1234231}{5678765}\)
\(A=\left(\frac{87}{95}-\frac{87}{95}\right)\)\(.\frac{1234231}{5678765}\)
\(A=0.\frac{1234231}{5678765}\)
\(A=0\)
Vậy A=0 .
_ Gọi phân số dương là abab (a>0;b>0)
_ Số nghịch đảo của abab là baba
Điều kiện: a≥b, a=b+m(m≥0)
Theo đề bài, ta có:
abab+ baba =b+mbb+mb +bb+mbb+m =1+mbmb +bb+mbb+m
≥ 1+mb+mmb+m +bb+mbb+m =1+m+bm+bm+bm+b
≥1+1≥2abab+baba ≥2
Vậy abab +baba ≥2
Cái này có phần hẳn hoi chứ ko phải phép tính bình thường nha! Nhưng mình lười lắm nên bạn tự phát hiện nha,có gì ko hiểu mình chỉ cho
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}=\frac{2\left(3n+4\right)}{3n+4}=\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a ) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của \(91\)hay \(3n+4\in\left\{1;7;13;91\right\}\)
Với \(3n+4=1n=-1\) loại vì n là số tự nhiên .
Với \(3n+4=7n=1\) nhận \(A=2+13=15\)
Với \(3n+4=13n=3\) nhận \(A=2+7=9\)
Với \(3n+4=91n=29\) nhận \(A=2+1=3\)
b ) Để A là phân số tối giản thì \(91\)không chia hết \(3n+4\) hay \(3n+4\) không là ước của \(91\).
\(\Rightarrow3n+4\)không chia hết cho ước nguyên tố của \(91\) . Vậy suy ra :
\(3n+4\)không chia hết cho 7 \(\Rightarrow n\ne7k+1\)
\(3n+4\)không chia hết cho 13 \(\Rightarrow n\ne13m+3\)
nước mưa : 丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶丶
a, A = 1 + 2 + 22 + ... + 299
= (1 + 2) + (22 + 23) + ... + (298 + 299)
= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)
= 1 . 3 + 22 . 3 + ... + 298 . 3
Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3
hay A chia hết cho 3 (đpcm)
b, A = 1 + 2 + 22 + ... + 299
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)
= 1 . 15 + 24 . 15 + ... + 296 . 15
Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15
hay A chia hết cho 15 (đpcm)
Tiếp bài của @trankhanhvy2008
A = 1 + 2 + 22 + 23 + 24 + ... + 299
2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )
= 2 + 22 + 23 + 24 + ... + 2100
2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )
=> A = 2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299
= 2100 - 1
2100 - 1 < 2100
=> A < 2100