Đề bài: Chứng minh: Biểu thức 4x^2 -4x+3 luôn dương với mọi x.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
Xu với coin dùng để đổi những thứ vật dụng hay áo quần chẳng hạn
Xu/ Coin (1 coin = 10 xu) dùng để đổi các quà hay thẻ điện thoại trong shop của olm
- Bạn có thể đổi quả ở đây nhé !
https://shop.olm.vn/doi-qua
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
A B C
Giả sử \(\dfrac{AB}{AC}=\dfrac{5}{12}\Rightarrow AB=\dfrac{5.AC}{12}\) (1)
Ta có
\(AC^2=BC^2-AB^2\) (Pitago)
\(\Rightarrow AC^2=26^2-\left(\dfrac{5.AC}{12}\right)^2=576\Rightarrow AC=24\) cm Thay vào (1)
\(\Rightarrow AB=\dfrac{5.24}{12}=10cm\)
\(b:c=5:12\Rightarrow\dfrac{b}{5}=\dfrac{c}{12}\Rightarrow\dfrac{b^2}{25}=\dfrac{c^2}{144}=\dfrac{a^2}{25+144}=\dfrac{a^2}{169}=\dfrac{26^2}{169}=\dfrac{26^2}{13^2}\)
\(\Rightarrow b^2=25.\dfrac{26^2}{13^2}\Rightarrow b=5.\dfrac{26}{13^{ }}=10\left(cm\right)\)
\(\Rightarrow c=\dfrac{12}{5}.10=24\left(cm\right)\)
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
\(4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow4\left(x-\dfrac{1}{2}\right)^2+2>0\) với mọi x
\(\Rightarrow dpcm\)
\(A=4x^2-4x+3=4\left(x^2-x+\dfrac{1}{4}\right)-1+3=4\left(x-\dfrac{1}{2}\right)^2+2\)
mà \(4\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x