Tính: A= \(\dfrac{\left(2^3+1\right)\left(3^3+1\right)...\left(100^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)...\left(100^3-1\right)}\)
Giúp mình với ạ, mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: +) \(\widehat{zOt}+\widehat{xOz}=\widehat{xOt}\) (hai góc kề nhau)
Mà \(\widehat{xOz}=50^o;\widehat{xOt}=110^o\) (gt) nên:
\(\widehat{zOt}+50^o=110^o\)
\(\widehat{zOt}=110^o-50^o=60^o\)
+) \(\widehat{yOt}+\widehat{xOy}=\widehat{xOt}\) (hai góc kề nhau)
Mà \(\widehat{xOy}=30^o;\widehat{xOt}=110^o\) (gt) nên;
\(\widehat{zOt}+30^o=110^o\)
\(\widehat{zOt}=110^o-30^o=80^o\)
Vậy....
b) Ta có:
+) Ba tia \(Oy;Oz;Ot\) cùng nằm trên một nửa mặt phẳng có bờ \(Ox\)
+) \(\widehat{xOy}=30^o< \widehat{xOz}=50^o< \widehat{xOt}=110^o\)
Do đó: Tia \(Oz\) nằm giữa hai tia \(Oy\) và \(Ot\)
Vậy...
Chón ý B 5/8. Mình trả lời nhanh nhất nè bạn. Tick cho mình đi!
\(a.\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{8}{9}\right)^2\\ =\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{\left(2\sqrt{2}\right)^2}{3^2}\right)^2\\ =\left(\dfrac{3}{2}\right)^4\cdot\left(\dfrac{2\sqrt{2}}{3}\right)^4\\ =\left(\dfrac{3}{2}\cdot\dfrac{2\sqrt{2}}{3}\right)^4\\ =\left(\sqrt{2}\right)^4\\ =4\\ b.\left(\dfrac{-3}{5}\right)^6\cdot\left(\dfrac{-5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot\left(-\dfrac{3}{5}\right)^5\cdot\left(\dfrac{-5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot\left(-\dfrac{3}{5}\cdot-\dfrac{5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot1\\ =-\dfrac{3}{5}\\ c.\left(\dfrac{4}{7}\right)^3\cdot\left(\dfrac{4}{7}\right)^5\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)^8\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)\cdot\left(\dfrac{4}{7}\right)^7\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)\cdot\left(\dfrac{4}{7}\cdot\dfrac{7}{4}\right)^7\\ =\dfrac{4}{7}\)
a: \(\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{8}{9}\right)^2=\dfrac{3^4}{4^4}\cdot\dfrac{8^2}{9^2}\)
\(=\dfrac{3^4}{3^4}\cdot\dfrac{2^6}{2^8}=\dfrac{1}{2^2}=\dfrac{1}{4}\)
b: \(\left(-\dfrac{3}{5}\right)^6\cdot\left(-\dfrac{5}{3}\right)^5\)
\(=\left(-\dfrac{3}{5}\right)^5\cdot\left(-\dfrac{5}{3}\right)^5\cdot\dfrac{-3}{5}=\left(-\dfrac{3}{5}\cdot\dfrac{-5}{3}\right)^5\cdot\dfrac{-3}{5}\)
\(=1^5\cdot\dfrac{-3}{5}=\dfrac{-3}{5}\)
c: \(\left(\dfrac{4}{7}\right)^3\cdot\left(\dfrac{4}{7}\right)^5\cdot\left(\dfrac{7}{4}\right)^7=\left(\dfrac{4}{7}\right)^8\cdot\left(\dfrac{7}{4}\right)^7\)
\(=\left(\dfrac{4}{7}\cdot\dfrac{7}{4}\right)^7\cdot\dfrac{4}{7}=1^7\cdot\dfrac{4}{7}=\dfrac{4}{7}\)
d: \(\dfrac{8^{14}}{4^4\cdot64^5}=\dfrac{2^{42}}{2^8\cdot2^{30}}=2^4=16\)
e: \(\dfrac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\dfrac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\dfrac{3^{41}}{3^{43}}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(1.\dfrac{1}{3}\left(\dfrac{6}{5}-\dfrac{9}{4}\right)\\ =\dfrac{1}{3}\left(\dfrac{24}{20}-\dfrac{45}{20}\right)\\ =\dfrac{1}{3}\cdot\dfrac{-21}{20}\\ =\dfrac{-7}{20}\\ 2.-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{5}{7}\right)\\ =-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{10}{14}\right)\\ =-\dfrac{7}{5}\cdot\dfrac{25}{14}\\ =\dfrac{-5}{2}\\ 3.\dfrac{1}{5}:\dfrac{3}{10}+\dfrac{5}{6}\\ =\dfrac{1}{5}\cdot\dfrac{10}{3}+\dfrac{5}{6}\\ =\dfrac{2}{3}+\dfrac{5}{6}\\ =\dfrac{4}{6}+\dfrac{5}{6}\\ =\dfrac{3}{2}\)
1: \(\dfrac{1}{3}\left(\dfrac{6}{5}-\dfrac{9}{4}\right)=\dfrac{1}{3}\cdot\dfrac{24-45}{20}\)
\(=\dfrac{1}{3}\cdot\dfrac{-21}{20}=\dfrac{-7}{20}\)
2: \(\dfrac{-7}{5}\left(\dfrac{15}{14}+\dfrac{5}{7}\right)=-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{10}{14}\right)\)
\(=-\dfrac{7}{5}\cdot\dfrac{25}{14}=\dfrac{-5}{2}\)
3: \(\dfrac{1}{5}:\dfrac{3}{10}+\dfrac{5}{6}=\dfrac{1}{5}\cdot\dfrac{10}{3}+\dfrac{5}{6}=\dfrac{2}{3}+\dfrac{5}{6}=\dfrac{4}{6}+\dfrac{5}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
4: \(-\dfrac{4}{5}:\left(\dfrac{20}{9}-\dfrac{8}{3}\right)=\dfrac{-4}{5}:\left(\dfrac{20}{9}-\dfrac{24}{9}\right)\)
\(=-\dfrac{4}{5}:\dfrac{-4}{9}=\dfrac{4}{5}\cdot\dfrac{9}{4}=\dfrac{9}{5}\)
5: \(\dfrac{10}{7}:\dfrac{5}{14}-\dfrac{2}{3}=\dfrac{10}{7}\cdot\dfrac{14}{5}-\dfrac{2}{3}\)
\(=\dfrac{140}{35}-\dfrac{2}{3}=4-\dfrac{2}{3}=\dfrac{12}{3}-\dfrac{2}{3}=\dfrac{10}{3}\)
6: \(-\dfrac{3}{4}:\left(\dfrac{1}{4}-\dfrac{5}{8}\right)=\dfrac{-3}{4}:\left(\dfrac{2}{8}-\dfrac{5}{8}\right)=\dfrac{-3}{4}:\dfrac{-3}{8}\)
\(=\dfrac{3}{4}:\dfrac{3}{8}=\dfrac{3}{4}\cdot\dfrac{8}{3}=\dfrac{8}{4}=2\)
7: \(\dfrac{5}{26}-\dfrac{5}{7}:\dfrac{2}{7}=\dfrac{5}{26}-\dfrac{5}{7}\cdot\dfrac{7}{2}=\dfrac{5}{26}-\dfrac{5}{2}\)
\(=\dfrac{5}{26}-\dfrac{65}{26}=\dfrac{-60}{26}=\dfrac{-30}{13}\)
8: \(\dfrac{3}{4}:\dfrac{-3}{5}+\dfrac{1}{2}=\dfrac{3}{4}\cdot\dfrac{5}{-3}+\dfrac{1}{2}=-\dfrac{5}{4}+\dfrac{1}{2}\)
\(=-\dfrac{5}{4}+\dfrac{2}{4}=-\dfrac{3}{4}\)
9: \(\dfrac{1}{3}\cdot\left(\dfrac{2}{15}-\dfrac{4}{9}\right):\dfrac{1}{9}\)
\(=\dfrac{1}{3}\cdot9\cdot\left(\dfrac{6}{45}-\dfrac{20}{45}\right)\)
\(=3\cdot\dfrac{-14}{45}=\dfrac{-14}{15}\)
a: \(\dfrac{14}{-27}\cdot x=\dfrac{7}{9}\)
=>\(x=\dfrac{-7}{9}:\dfrac{14}{27}=\dfrac{-7}{9}\cdot\dfrac{27}{14}=\dfrac{-1}{2}\cdot3=-\dfrac{3}{2}\)
b: \(\left(2x-1\right):\dfrac{8}{9}=\dfrac{15}{4}\)
=>\(2x-1=\dfrac{15}{4}\cdot\dfrac{8}{9}=\dfrac{120}{36}=\dfrac{10}{3}\)
=>\(2x=\dfrac{10}{3}+1=\dfrac{13}{3}\)
=>\(x=\dfrac{13}{3}:2=\dfrac{13}{6}\)
c: \(\dfrac{2}{5}:x=\dfrac{3}{16}\)
=>\(x=\dfrac{2}{5}:\dfrac{3}{16}=\dfrac{2}{5}\cdot\dfrac{16}{3}=\dfrac{32}{15}\)
d: \(\dfrac{11}{12}-\left(\dfrac{2}{5}-3x\right)=\dfrac{2}{3}\)
=>\(\dfrac{2}{5}-3x=\dfrac{11}{12}-\dfrac{2}{3}=\dfrac{11}{12}-\dfrac{8}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
=>\(3x=\dfrac{2}{5}-\dfrac{1}{4}=\dfrac{3}{20}\)
=>\(x=\dfrac{3}{20}:3=\dfrac{1}{20}\)
\(a)\dfrac{14}{-27}\cdot x=\dfrac{7}{9}\\ x=\dfrac{7}{9}:\dfrac{14}{-27}\\ x=\dfrac{7}{9}\cdot\dfrac{-27}{14}\\x =\dfrac{-3}{2}\\ b)\left(2x-1\right):\dfrac{8}{9}=\dfrac{15}{4}\\ 2x-1=\dfrac{15}{4}\cdot\dfrac{8}{9}\\ 2x-1=\dfrac{10}{3}\\ 2x=\dfrac{10}{3}+1\\ 2x=\dfrac{13}{3}\\ x=\dfrac{13}{3}:2=\dfrac{13}{6}\\ c)\dfrac{2}{5}:x=\dfrac{3}{16}\\ x=\dfrac{2}{5}:\dfrac{3}{16}\\ x=\dfrac{2}{5}\cdot\dfrac{16}{3}\\ x=\dfrac{32}{15}\\ d)\dfrac{11}{12}-\left(\dfrac{2}{5}-3x\right)=\dfrac{2}{3}\\ \dfrac{2}{5}-3x=\dfrac{11}{12}-\dfrac{2}{3}\\ \dfrac{2}{5}-3x=\dfrac{3}{12}\\ \dfrac{2}{5}-3x=\dfrac{1}{4}\\ 3x=\dfrac{2}{5}-\dfrac{1}{4}\\ 3x=\dfrac{3}{20}\\ x=\dfrac{3}{20}:3\\ x=\dfrac{1}{20}\)
a: \(0,25\in Q\)
=>Đúng
b: \(-\dfrac{6}{7}\in Q\)
=>Đúng
c: \(-235\notin Q\)
=>Sai
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: EA=EH
=>E nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BE là đường trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔEAK=ΔEHC
=>EK=EC
mà EK>EA(ΔEAK vuông tại A)
nên EC>EA
a: BE=BD+DE
CD=CE+DE
mà BD=CE
nên BE=CD
Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔMBE và ΔNCD có
MB=NC
\(\widehat{MBE}=\widehat{NCD}\)
BE=CD
Do đó: ΔMBE=ΔNCD
=>ME=ND
b:
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
=>MN//DE
Xét tứ giác MNED có
MN//ED
ME=ND
Do đó: MNED là hình bình hành
=>MD=NE
Xét ΔMDE và ΔNED có
MD=NE
DE chung
ME=ND
Do đó: ΔMDE=ΔNED
=>\(\widehat{MED}=\widehat{NDE}\)
=>\(\widehat{IDE}=\widehat{IED}\)
=>ΔIED cân tại I
c: Ta có: \(\widehat{IDE}+\widehat{IDB}=180^0\)(hai góc kề bù)
\(\widehat{IED}+\widehat{IEC}=180^0\)(hai góc kề bù)
mà \(\widehat{IDE}=\widehat{IED}\)
nên \(\widehat{IDB}=\widehat{IEC}\)
Xét ΔIDB và ΔIEC có
ID=IE
\(\widehat{IDB}=\widehat{IEC}\)
DB=EC
Do đó: ΔIDB=ΔIEC
=>IB=IC
=>I nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AI là đường trung trực của BC
=>AI\(\perp\)BC
Bài 7:
p là số nguyên tố lớn hơn 3
=>p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì \(8p+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)⋮3\)
=>Loại
=>p=3k+2
\(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)
=>4p+1 là hợp số
Bài 6:
a: TH1: p=3
p+2=3+2=5; p+4=3+4=7
=>Nhận
TH2: p=3k+1
p+2=3k+1+2=3k+3=3(k+1)
=>Loại
TH3: p=3k+2
p+4=3k+2+4=3k+6=3(k+2)
=>Loại
b: TH1: p=5
p+2=5+2=7; p+6=5+6=11; p+18=5+18=23; p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24=5k+1+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+18=5k+2+18=5k+20=5(k+4)
=>Loại
TH4: p=5k+3
p+2=5k+3+2=5k+5=5(k+1)
=>Loại
TH5: p=5k+4
p+6=5k+4+6=5k+10=5(k+2)
=>Loại
Vậy: p=5
Bài 5:
Với p=2 => 7p+5=7*2 + 5 = 19 (tm)
Với p>3
TH1: p=3k+1
=> 7(3k+1)+5=21k+7+5=21k+12=3(7k+4) ⋮ 3
=> 7p+5 là hợp số
TH2: p=3k+2
=>7(3k+2)+5=21k+14+5=21k+19
Vì p là số nguyên tố lớn hơn 3 => p lẻ => 3k + 2 lẻ => 3k lẻ => k lẻ
k lẻ => 21k lẻ => 21k + 19 chẵn => 21k+19 ⋮ 2
=> 7p+5 là hơn số
Vậy có p=2 là thỏa mãn