(2002 - 79 + 15) - (-79 + 15)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích khu vườn là:
`20*12=240(m^2)`
Diện tích lối đi là
`1*12=12(m^2)`
Diện tích trồng hoa là:
`240-12=228(m^2)`
ĐS: ...
ta có 2n+12= 2(n + 6)
suy ra để 2n+12 chia hết cho n+3 thì
2(n + 6) chia hết cho n+3
nên n + 6 chia hết n +3
rồi làm tiếp nhé :)
Ta có \(n+3⋮n+3\) với mọi số tự nhiên \(n\)
nên \(2\left(n+3\right)=2n+6⋮n+3\)
Mà \(2n+12=2n+6+6\)
Do đó để \(2n+12⋮n+3\) thì \(6⋮n+3\)
nên \(n+3\) thuộc \(U'\left(6\right)=\text{1; 2; 3; 6}\)
Giải từng trường hợp ta được: \(n=0;3\)
\(3^{400}=\left(3^4\right)^{100}=81^{100};5^{300}=\left(5^3\right)^{100}=125^{100}\)
mà 81<125
nên \(3^{400}< 5^{300}\)
\(\overline{cab}=3\cdot\overline{ab}+8\)
=>\(100c+10a+b-30a-3b-8=0\)
=>-20a-2b+100c-8=0
=>\(\left(a;b;c\right)\in\left\{\left(4;6;1\right);\left(9;6;2\right)\right\}\)
Vậy: Số cần tìm là 461;962
a: Gọi số ban đầu có dạng là \(\overline{ab7}\)
Số mới được tạo ra khi chuyển chữ số 7 lên đầu là \(\overline{7ab}\)
Chia số mới cho số cũ thì được thương là 2,dư là 21
nên ta có: \(\overline{7ab}=2\cdot\overline{ab7}+21\)
=>\(700+\overline{ab}=2\left(10\overline{ab}+7\right)+21\)
=>\(\overline{ab}-20\overline{ab}=14+21-700\)
=>\(-19\overline{ab}=-665\)
=>\(\overline{ab}=35\)
vậy: Số ban đầu là 357
b: Trong 3 số tự nhiên liên tiếp, chắc chắn sẽ có số chia hết cho 3
=>Tích của 3 số tự nhiên liên tiếp sẽ luôn chia hết cho 3
Gọi số cần tìm là \(\overline{abc}\)
Viết thêm số 50 vào bên trái thì lấy số mới chia số ban đầu thì được thương là 401 nên \(\overline{50abc}=401\cdot\overline{abc}\)
=>\(50000+\overline{abc}=401\cdot\overline{abc}\)
=>\(400\cdot\overline{abc}=50000\)
=>\(\overline{abc}=125\)
Vậy: Số cần tìm là 125
a: \(2\cdot5^2+3:71^0-54:3^3\)
\(=2\cdot25+3:1-54:27\)
=50+3-2=51
b: \(36\cdot4-4\cdot\left(82-7\cdot11\right)^2:4-2016^0\)
\(=144-\left(82-77\right)^2-1\)
\(=143-5^2=143-25=118\)
a: Vì AB//CD
nên \(\dfrac{MB}{MC}=\dfrac{AB}{DC}=\dfrac{1}{3}\)
=>\(\dfrac{S_{BAM}}{S_{MAC}}=\dfrac{1}{3}\)
b: Vì AB//CD
nên ΔMAB~ΔMDC
=>\(\dfrac{S_{MAB}}{S_{MDC}}=\left(\dfrac{AB}{DC}\right)^2=\dfrac{1}{9}\)
=>\(S_{MAB}=\dfrac{1}{9}\cdot S_{MDC}\)
=>\(\dfrac{S_{MAB}}{S_{ABCD}}=\dfrac{1}{8}\)
=>\(\dfrac{S_{MAB}}{64}=\dfrac{1}{8}\)
=>\(S_{MAB}=\dfrac{64}{8}=8\left(cm^2\right)\)
(2002 - 79 + 15) - (-79 + 15)
= 2002 - 79 + 15 + 79 - 15
= 2002 + (79 - 79) + (15 - 15)
= 2002 + 0 + 0
= 2002
2002 nhé