Qua điểm O vẽ 5 đường thẳng phân biệt. Hỏi có bao nhiêu cặp góc đối đỉnh nhỏ hơn góc bẹt? Giải thích?
Nhanh nhanh, ai đúng mình tick , nhớ vẽ cả hình nữa nhé, chính xác vào đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để G lớn nhất thì :
\(|4x-1|\);\(|xy-3|\)nhỏ nhất và bằng 0
=> 4x-1 =0 1/4 . y-3=0
x= (1+0) :4 y=(0+3) :1/4
x=1/4 =>x=1/4 y=12
=> G= 3 - \(|4x-1|\)- \(|xy-3|\)
=> G=3-0-0=3
vậy maxG=3
Ta có: \(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
=> \(\hept{\begin{cases}x=6.20=120\\y=6.24=144\\z=6.21=126\end{cases}}\)
Ta có :
\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24}\) (1)
\(\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\) (2)
Từ (1) và (2) => \(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{138}{23}=6\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=6\\\frac{y}{24}=6\\\frac{z}{21}=6\end{cases}}\Rightarrow\hept{\begin{cases}x=120\\y=144\\z=126\end{cases}}\)